ТЕРМОДИНАМИЧЕСКИ-ДИАГРАММНОЕ ИССЛЕДОВАНИЕ ПОДСИСТЕМ РАСПЛАВОВ СИСТЕМЫ TI0₂-Ca0-Mg0-Al₂0₃-Si0₂

С. О. Байсанов, д.т.н., Н. З. Нургали, М. С. Апмагамбетов

Химико-металлургический институт им. Ж. Абишева

Металлургиялык кождардьщ непзж курайтын Ca0-Mg0-Al₂0₃-Si0₂ жуйесжщ термодинамикалык-диаграммальщ талдау эдюмен куй диаграммасы зерттелЫт нактыланган. Ол 21 туракты элементарлы тетраэдрдан куралатыны аныкталган. Алынган мэл1меттер бескомпонен-ггі Ti0₂-Ca0-Mg0-Al₂0₃-Si0₂ жуйесжщ конгруэнтп балцитын политоптарга карама-кайшыльцсыз белшектелелнж керсетед!. ТуіііНfli свздер: бай титанды кож, диаграмма, термодинамикалык-диаграммалык талдау, конгруэнгп, тетраэдр.

The correctness of tetrahedral form of phase structure diagram of the system CaO-MgO-Al₂0₃-SiO₂ is confirmed and it is a basic factor for a consistent division of five-component system TiO₂- CaO-MgO-Al₂O₃-SiO₂ into stable polytopes. The data obtained make possible to determine phase composition of slag melts at smelting of rich titanium slags and various ferrotitanium grades.

Key words: titanium slags, slag melts, thermodynamic-diagram analysis.

Диаграммы состояния многокомпонентных оксидных систем содержат полновесную информацию о составе и структуре предполагаемых продуктов плавки и служат для получения шлаков, максимально близких к заданным составам, и определения температурной зоны процесса, тем самым, предопределяя их свойства и способы технологических режимов их получения.

Реальные богатые титановые шлаки (БТШ), предназначенные для получения губчатого титана, и шлаки от производства ферротитана представляют собой многокомпонентную систему оксидных продуктов восстановления ильменитовых концентратов. Однако их основу составляет относительно небольшое количество оксидов. Фазовый состав БТШ и шлаков ферротитана можно охарактеризовать пятикомпонентной системой Ti0₂-Ca0-Mg0-Al₂0₃. Ti0₂-Ca0-Mg0-Si0₂, TЮ₂- Ca0-Al₂0₃-Si0₂, Ti0₂-Mg0-Al₂0₃-Si0₂ и Ca0-Mg0-Al₂0₃-Si0₂[1]. Последняя подсистема является главной составной частью ряда многокомпонентных систем, в том числе девятикомпонентной системы CaO-Mg0-Fe0-Fe₂O₃-Cr₂O₃-Al₂O₃-ZrO₂-TiO₂-SiO₂, в которую входит большинство шлаковых продуктов металлургического производства.

Установлено, что пятикомпонентная система Ti0₂-Ca0-Mg0-Al₂0₃-Si0₂ с учетом инконгруэнтных соединений состоит из 58 элементарных пентатопов сосуществующих фаз [2]. При этом для каждого из пентатопов найдены численные значения коэффициентов *a*, *b*, *c*, *d* и е, что позволяет рассчитать равновесный фазовый состав при любом сочетании оксидов TЮ₂, CaO, MgO, Al₂0₃ и Si0₂ в сырье или изделии. Система Ca0-Mg0-Al₂0₃-Si0₂ состоит из 38 элементарных тетраэдров с учетом метастабильных соединений [1]. На рис. 1 представлена данная система с элементарными тетраэдрами, стабильными как в жидком, так и в твердом состоянии. На рис. 2, 3 для облегчения восприятия этой диаграммы и ее фазового строения она раздвинута на составные части.

Рис. 1. Система Ca0-Mg0-Al₂0₃-Si0₂

В рассматриваемую диаграмму были внесены многочисленные коррективы и уточнения, касающиеся ее высокоглиноземистой области [3]. Также существенное противоречие фазового состава этой диаграммы наблюдается вследствие наличия на ее граничной тройной системе Mg0-Al₂0₃-Si0₂ квазибинарной линии Si0₂-Mg0 • Al₂0₃. В этом случае внутри системы Ca0-Mg0-Al₂0₃-Si0₂ образуется квазитройная система 2CaO • Si0₂-MgO • Al₂O₃-SiO₂ [1], которая во многих местах пересекается с несколькими истинно квазитройными плоскостями 2CaO • Al₂O₃ • SiO₂-2CaO • MgO • 2SiO₂-CaO • SiO₂, CaO • Al_zO₃ • 2SiO₂- $2CaO \cdot MgO \cdot 2SiO_2 - CaO \cdot SiO_2$, $CaO \cdot AI_zO_3 \cdot 2SiO_z - CaO \cdot MgO \cdot 2SiO_2 - SiO_z$ и другими. Согласно общепринятым принципам фазовых соотношений в многокомпонентных системах вышеуказанный факт невозможен [4]. В противном случае в местах пересечения квазибинарных линий 2CaO • Al₂0₃ • SiO_z-2CaO • MgO • 2SiO_z, CaO • Al_z0₃ • 2SiO₂-2CaO • MgO • 2SiO_z и CaO • Al₂O₃ • 2SiO₂-CaO • MgO • 2SiO_z с плоскостью 2CaO • Si0₂-Mg0 • Al₂0₃-Si0₂ должны образоваться четырехкомпонентные соединения. Однако последние по настоящее время не обнаружены.

Следовательно, исходя из указанного и учитывая данные [5], согласно которым квазибинарность линии 2CaO • Si0_z-Mg0 Al₂0₃ яв-

Рис. 2. Составные части системы Ca0-Mg0-Al₂0₃-Si0.

ляется очевидной, поля кристаллизации фаз и их соотношения в системе Ca0-Mg0-Al₂0₃-Si0₂требуют уточнений и дополнительных исследований, что было осуществлено авторами данной работы.

Исследования энергетики взаимодействия сосуществующих фаз MдO-2CaO • Al₂O₃ SiO₂ (периклаз-геленит) и 2CaO • SiO₂-MgOAl₂O₃ (ларнит-шпинель) показали, что при температурах выше 900 К величина свободной энергии Гиббса положительная (fIG>0), т. е. реакция протекает между исходными веществами:

MgO + 2CaO • Al₂O₃ SiO₂ 2CaO • SiO₂ + MgO Al₂O₃; flG_{goo}>O MgO+2CaO • MgO-2SiO₂ 2MgOSiO_z+CaO • MgOSiO_z; Д0°₂₉₈=+50,65 кдж/моль

Вследствие этого вместо коннод $2CaO \cdot SiO_z - MgO - AI_zO_3$ и $2MgO SiO_2 - CaO - MgO SiO_2$ появляются равноценные квазибинарные линии MдO-2CaO • AI_2O_3 SiO_2 и MдO-2CaO • MgO-2SiO_z (рис. 3), за счет которых снимаются вышеуказанные противоречия, связанные с пересечением плоскостей и образованием четверных соединений.

Рис. 3. Составные части системы Ca0-Mg0-Al₂0₃-Si0₂

В результате внесенных изменений, приведенных на диаграмме фазового строения системы Ca0-Mg0-Al₂0₃-Si0₂, она разбивается на 21 стабильный тетраэдр, с образованием новых пяти под № 17-21 (таблица, где C-CaO, M-MgO, A-Al_zO₃, S-SiO_z).

Разбивка общей системы осуществлена с учетом конгруэнтно плавящихся соединений и объединением метастабильных коннод инконгруэнтных компонентов в стабильные тетраэдры. Сумма относительных объемов элементарных тетраэдров системы, рассчитанных методом обобщенного правила о «центре тяжести» [6], равна единице (0,999999).

№ п/п	Элементарные тетраэдры	Объем
1.	C-M-C ₁₂ A-,-C ₂ S	0,179735
2.	M-C ₁₂ A ₇ -CA-C ₂ S	0,04537
3.	CA-CAJ-CJAS-MA	0,008615
4.	CAJ-CJAS-MA-A	0,013387
5.	CJAS-CASJ-MA-A	0,037368
6.	A ₃ S ₂ -CAS ₂ -ma-A	0,016121
7.	A ₃ S ₂ -CAS ₂ -ma-S	0,041045
8.	M ₂ S-CAS ₂ -ma-S	0,08299
9.	M ₂ S-CAS ₂ -CMS ₂ -S	0,054465
10.	CS-CAS ₂ -CMS ₂ -S	0,032971
11.	M ₂ S-CAS ₂ -C ₂ ms ₂ -ma	0,063558
12.	M_2 S-CAS ₂ -C ₂ ms ₂ -CMS ₂	0,017976
13.	CS-CAS ₂ -C ₂ ms ₂ -CMS ₂	0,007252
14.	CS-CAS^CYVS-CJMSJ	0,011451
15.	CASJ-CJAS-CJMSJ-MA	0,032667
16.	CJS-CS-CJMSJ-CJAS	0,009249
17.	M-CJS-CJAS-CA	0,045978
18.	$M-C_2S-C_2MS_2-C_2AS$	0,053439
19.	M-CJAS-CA-MA	0,055743
20.	M-CJMS^JAS-MA	0,064788
21.	M-MJS-CJMSJ-MA	0,125831
	Сумма	0,999999

Элементарные тетраэдры системы Ca0-Mg0-Al₂0₃-Si0₂

Таким образом, результаты проведенных расчетов подтверждают верность тэтраэдрации диаграммы фазового строения системы Ca0-Mg0-Al₂0₃-Si0₂ и являются основополагающими для непротиворечивого разбиения пятикомпонентной системы Ti0₂-Ca0-Mg0-Al₂0₃-Si0₂ на стабильные политопы. При этом полученные данные позволят определить фазовый состав шлаковых расплавов при выплавке богатых титановых шлаков и различных марок ферротитана.

Литература

1. Бережной А. С. Многокомпонентные системы окислов. - Киев: Наукова думка, 1970. - 544 с.

2. Акбердин А. А., Новиков В. С., Марсуверский Б. А. Фазовая диаграмма системы Ca0-Mg0-Si0₂-Al₂0₃-Ti0₂ в аналитических выражениях// Изв. вузов. Черная металлургия. - 1989. - № 12. - С. 23-30.

3. Габдулин Т. Г., Такенов Т. Д., Байсанов С. О., Букетов Е. А. Физико-химические свойства марганцевых шлаков. - Алма-Ата, 1984. - 232 с.

4. Захаров А. М. Диаграммы состояния четверных систем. - М.: Металлургия, 1978. - 295 с.

5. Prince A. T. Phase Eguilibrium Relabionships in a Portion of the System Mg0-Al₂0₃-Ca0 II T. Am. Ceram. Soc. - 1951. - V. 34, No 2. - P. 44-51.

6. ПалатникЛ. С. // ДАН СССР. - 1954. - Т. 95, № 6. - С. 1227.

ИНФОРМАЦИЯ

HT2007K2071

ГИДРОЦИКЛОННАЯ НЕФТЕЛОВУШКА

Назначение - разделение трехкомпонентной жидкости на составляющие,

Гидроциклон снабжен гидроэлеватором и устанавливается на всасывающей линии центробежного насоса. Насос не подвержен абразивному износу. Срок службы насоса увеличивается в 2-3 раза.

Этапы разработки	Бизнес-план
Состояние защиты	Патент(ы)
Организация-разработчик	Таразский государственный университет им. М. Х. Дулати