8 **н. (3 н. (3 н.**

- 1. Лихачев Н.В. Иммунология и ее роль с инфекциями животных. В кн.: Проблемы иммунитета с-х животных. М., 1966. С. 179-196.
 - 2. Основы иммунитета животных. М.: Колос, 1968. С. 223.
- 3. Хрябустовский И.Ф. естественная резистентность и иммунобиологическая реактивность организма коров и телят в зависимости от условий содержания и физиологического состояния. Харьков, 1970. С. 3-24.

Түйіндеме

Бұл мақалада Батыс-Қазақстан облысы жағдайында әртүрлі жастағы ешкілердің табиғи резистенттілігінің көрсеткіштері берілген.

Resume

The factors natural rezistent happen to beside nanny goats different age in condition West-Kazakhstan area.

УДК 576

ЭКОЛОГИЧЕСКИЙ АНАЛИЗ ПАРАЗИТОФАУНЫ ЛЕЩА И ПЛОТВЫ В КАМЫШЛЫБАШСКОЙ СИСТЕМЕ ОЗЕР

3.Р.Карбозова

TOO «Казахский научно-исследовательский ветеринарный институт»

Камышлыбашская система озер, связанных с рекой Сырдарьей, является уникальной системой водоемов, имеющей большое рекреационное и рыбохозяйственное значение для западного региона Казахстана и республики в целом. Самым крупным (и наиболее удаленным от Сырдарьи) является озеро Камышлыбаш, остальные имеют почти вдесятеро меньшую площадь. Непосредственно впадает в Сырдарью озеро Жаланаш, а Лайколь и Раим соединены с рекой временными пересыхающими протоками. При этом все озера сообщаются между собой протоками различной ширины.

Ранее изучения паразитов промысловых рыб в Камышлыбашских озерах не проводилось. Лещ и плотва в этих водомах являются важнейшими объектами любительского и промыслового лова, поэтому безопасность их для человека и мониторинг паразитов и болезней, снижающих численность рыб, представляются важными.

Материалом для настоящей работы послужили 194 экз. леща и 219 экз. плотвы, добытых в пяти озерах Камышлыбашской системы. Рыб подвергали полному гельминтологическому вскрытию; гельминтов обрабатывали по

общепринятым методикам [1]. Видовой статус паразитов рыб устанавливали по описаниям в монографии А.И.Агаповой [2]. Количественные данные обрабатывали статистическими методами [3]. Из показателей зараженности использовали традиционные формальные показатели - экстенсивность и интенсивность инвазии, а также индекс обилия - среднее число паразитов на каждого хозяина данной выборки [4].

У леща в озерах Камышлыбашской системы в целом зарегистрировано 11 видов паразитов, в том числе 3 вида одноклеточных, 7 видов гельминтов и 1 вид паразитических пиявок. Паразитические Protozoa представлены миксоспоридиями рода Myxobolus: Myxobolus cyprini, M.circulus, M.muelleri. Из гельминтов отмечены 3 вида моногеней: Dactylogyrus wunderi, Dactylogyrus falcatus, Diplozoon paradoxum, 2 вида цестод-лигулид в личиночной форме: Ligula intestinalis и Digramma interrupta, 2 вида трематод в стадии метацеркарии: Postdiplostomum cuticola и Diplostomum spathaceum. Паразитические кольчатые черви представлены пиявкой Piscicola geometra.

Наиболее богатый видовой состав паразитов отмечен в самом крупном озере данной озерной системы - Камбаш (Камышлыбаш), где отмечены 10 видов паразитов (все виды гельминтов и простейших, исключая паразитическую пиявку). В озере Лайкуль отсутствует один вид цестод и один вид трематод (таблица 1). В озере Каязды выпадают один вид одноклеточных, один вид моногеней и один вид трематод, в озере Жаланаш -один вид одноклеточных, один вид цестод и оба вида трематод. Наиболее бедна паразитофауна леща в озере Раим, где из общего списка обнаружено всего 4 вида паразитов: 2 вида одноклеточных и 2 вида моногеней.

Вероятно, выпадение ряда видов паразитов из паразитоценоза леща связано с относительной изолированностью мелких озер системы (особенно крайнего озера Раим) как от самой реки Сырдарьи, так и от наиболее крупного озера Камбаш, из-за чего не достигается беспрепятственного обмена паразитами. Большинство видов гельминтов и одноклеточных паразитов леща не являются специфичными и отмечены также у других видов промысловых рыб в Камышлыбашской озерной системе. И при этом у других видов рыб также отмечен наиболее богатый видовой состав паразитов в озере Камбаш и наиболее значительное обеднение паразитофауны в озере Раим.

Из всех видов паразитов наиболее высока зараженность моногенеями. Значительны также показатели инвазии плероцеркоидами лигулид и метацеркариями Diplostomum spathaceum, что обусловлено обитанием на озерах значительного количества рыбоядных птиц, в первую очередь сизой и серебристой чаек.

Существенное эпизоотологическое значение имеют моногелей, лигулиды и диплостоматиды, способствующие гибели молоди рыб. Опасных для человека видов паразитов у леща в Кампилыбашской системе не отмечено.

Видовой состав и показатели зараженности паразитами леща в озерах Камышлыбашской системы

N₂	Вид паразита	Число заражен ных хозяев	Общее число гельминт ов	Показатели зараженности			
п/п				ЭИ (%)	ИО (экз.)	ИИ (экз.)	
	<u> </u>	Озер	о Камбаш, 60	 0 экз.		1	
1.	Myxobolus cyprini	5	5	8,33±3,57	0,083±0,036	1,0	
2.	Myxobolus circulus	3	3	5,0±2,81	0,05±0,028	1,0	
3.	Myxobolus muelleri	3	3	5,0±2,81	0,05±0,028	1,0	
4.	Dactylogyrus wunderi	15	32	25,0±5,59	0,53±0,22	2,13	
5.	Dactylogyrus falcatus	31	53	51,67±6,45	0,88±0,34	1,71	
6.	Diplozoon paradoxum	2	4	3,33±2,32	0,067±0,047	2,0	
7.	Ligula intestinalis	9	24	15,0±4,61	0,375±0,12	2,67	
8.	Digramma interrupta	8	15	13,33±4,39	0,25±0,09	1,875	
9.	Postdiplostomum cuticola	3	7	5,0±2,81	0,117±0,072	2,33	
10.	Diplo stomum spathaceum	20	27	33,33±6,09	0,45±0,18	1,35	
11.	Piscicola geometra	0	0	0	0	0	
	l	Озер	о Лайкуль, 4	3 экз.	l		
1.	Myxobolus cyprini	2	2	4,65±3,21	0,046±0,032	1,0	
2.	Myxobolus circulus	2	2	4,65±3,21	0,046±0,032	1,0	
3.	Myxobolus muelleri	1	1	2,33±2,30	0,023±0,023	1,0	
4.	Dactylogyrus wunderi	10	24	23,26±6,44	0,558±0,23	2,40	
5.	Dactylogyrus falcatus	37	59	86,05±5,28	1,37±0,52	1,59	
6.	Diplozoon paradoxum	6	12	13,95±5,28	0,279±0,106	2,0	
7.	Ligula intestinalis	16	32	37,21±7,37	0,744±0,321	2,0	
8.	Digramma interrupta	0	0	0	0	0	
9.	Postdiplostomum cuticola	0	0	0	0	0	
10.	Diplostomum spathaceum	7	20	16,28±5,63	0,465±0,216	2,86	

11.	Piscicola geometra	0	0	0	0	0		
Озеро Каязды, 58 экз.								
1.	Myxobolus cyprini	1	3	1,72±1,71	0,052±0,052	3,0		
2.	Myxobolus circulus	1	1	1,72±1,71	0,01 7 ±0,017	1,0		
3.	Myxobolus muelleri	0	0	0	0	0		
4.	Dactylogyrus wunderi	-1	9	5,№2,91	0,155±0,091	3,0		
5.	Dactylogyrus falcatus	10	23	17,24±4,96	0,396±0,163	2,30		
6.	Diplozoon paradoxum	0	0	0	0	0		
7.	Ligula intestinalis	3	16	5,17±2,91	0,276±0,187	5,33		
8.	Digramma interrupta	5	5	8,62±3,68	0,086±0,037	1,0		
9.	Postdiplostomum cuticola	0	0	0	0	0		
10.	Diplostomum	3	6	5,17±2,91	0,103±0,064	2,0		
11.	Piscicola geometra	2	2	3,45±2,40	0,034±0,024	1,0		
		Озеро	Жаланаш, 2	8 экз.	_			
1.	Myxobolus cyprini	1	1	3,57±3,51	0,036±0,036	1,0		
2.	Myxobolus circulus	0	0	0	0	0		
3.	Myxobolus muelleri	2	2	7,14±4,87	0,071±0,050	1,0		
4.	Dactylogyrus wunderi	2	5	7,14±4,87	0,179±0,126	2,50		
5.	Dactylogyrus falcatus	7	13	25,0±8,18	0,464±0,212	1,86		
6.	Diplozoon paradoxum	3	7	10,71±5,84	0,25±0,160	2,33		
7.	Ligula intestinalis	0	0	0	0	0		
8.	Digramma interrupta	2	2	7,14±4,87	0,071±0,050	1,0		
9.	Postdiplostomum cuticola	0	0	0	0	0		
10.	Diplostomum spathaceum	0	0	0	0	0		
11.	Piscicola geometra	1	1	3,57±3,51	0,036±0,036	1,0		
Озеро Раим, 5 экз.								
1.	Myxobolus cyprini	1	1	20,0±17,89	0,20±0,20	1,0		
2.	Myxobolus circulus	1	1	20,0±17,89	0,20±0,20	1,0		
3.	Myxobolus muelleri	0	0	0	0	0		
4.	Dactylogyrus wunderi	5	13	100%	2,60±0,60	2,60		
5.	Dactylogyrus falcatus	1		20,0±17,89	0,60±0,60	3,0		

811168	M 30 H 30 H 30 M 30 H 30 H 30) ki (39) ii (39	H 48 H 38 H 38	11(0) 11(0) 11(0) 11	(10 H (10 H (10 H (10 H	H (1)
6.	Diplozoon paradoxum	0	0	0	0	0
7.	Ligula intestinalis	0	0	0	0	0
8.	Digramma interrupta	0	0	0	0	0
9.	Postdiplostomum cuticola	0	0	0	0	0
10.	Diplostomum spathaceum	0	0	0	0	0
11.	Piscicola geometra	0	0	0	0	0

Примечание к таблицам 1 и 2: у одноклеточных паразитов интенсивность инвазии указана как количество особей в поле зрения бинокуляра при увеличении 4*8.

У плотвы в Камышлыбашских озерах зарегистрировано 11 видов паразитов, в том числе 3 вида одноклеточных и 8 видов гельминтов. Рготогоа представлены тремя видами рода Муховоlus, не являющихся специфичными для этого вида рыб: Myxobolus cyprini, M.dispar, M.macrocapsularis. Из гельминтов отмечены 4 вида моногежй: Dactylogyrus turalensis, Dactylogyrus crucifer, Dactylogyrus nanus, Paradiplozoon homoin, 1 вид цестод-гвоздичников - Caryophyllaeus fimbriceps, 2 вида трематод, в том числе один в стадии метацеркарии - Postdiplostomum cuticola, другой в половозрелом состоянии Asymphilidora kubanica, 1 вид нематод - Contracaecum microcephalium. Паразитических членистоногих и кольчатых червей не отмечено.

Наиболее богатый видовой состав паразитов (все 11 видов) зарегистрирован у плотвы в самом крупном озере - Камбаш. В озере Лайкуль отсутствовали один вид одноклеточных, цестода и половозрелые трематоды (асимфилидора). В озере Каязды у плотвы паразитировали только моногенетические сосальщики и два вида одноклеточных, остальные паразиты (нематоды, трематоды и цестоды) отсутствовали. В озере Жаланаш отсутствовала цестода (гвоздичник) и один вид одноклеточных, а в озере Раим обнаружены лишь 2 вида одноклеточных, 2 вида моногеней и нематода.

Наиболее высоки показатели зараженности рыб моногенеями, и они имеют основное эпизоотологическое значение за счет гибели молоди плотвы. В озерах Камбаш и Жаланаш значительна также зараженность рыб нематодами и трематодами. И именно в этих озерах заметное эпизоотологическое значение имеет Postodiplostomum cuticola (отсутствующий или редко встречающийся у плотвы в других озерах).

Опасных для человека и домашних животных гельминтозоонозов у плотвы не выявлено, что свидетельствует о безопасности пищевого и кормового использования этой рыбы.

Видовой состав и показатели зараженности паразитами плотвы в озерах Камышлыбашской системы

N₂	Вид паразита	Число заражен ных хозяев	Общее число гельминт ов	Показатели зараженности			
п/п				ЭИ (%)	ИО (экз.)	ИИ (экз.)	
		Озе	∟ еро Камбаш	, 70 экз.	1	<u> </u>	
1.	Myxobolus cyprini	4	4	5,71±277	0,057±0,028	1,0	
2.	Myxobolus dispar	2	2	2,85±1,99	0,029±0,029	1,0	
3.	Myxobolus macrocapsularis	1	1	1,43±1,42	0,014±0,014	1,0	
4.	Dactylogyrus turalensis	5	7	7,14±3,08	0,IO±0,046	1,40	
5.	Dactylogyrus crucifer	48	58	68,57±5,55	0,829±0,281	1,21	
6.	Dactylogyrus nanus	21	37	30,0±5,48	0,529±0,185	1,76	
7.	Paradiplozoon homoin	3	8	4,29±2,42	0,114±0,066	2,67	
8.	Caryophyllaeus fimbriceps	5	13	7,14±3,08	0,186±0,084	2,60	
9.	Postodiplostomum cuticola	6	И	8,57±3,34	0,157±0,063	1,83	
10.	Asymphilidora kubanica	2	7	2,85±1,99	0,10±0,071	3,50	
11.	Contracaecum microcephalium	7	18	10,0±3,59	0,257±0,Π4	2,57	
		Озе	ро Лайкуль	, 89 экз.	•		
1.	Myxobolus cyprini	0	0	0	0	0	
2.	Myxobolus dispar	2	7	2,25±1,57	0,079±0,0603	3,50	
3.	Myxobolus macrocapsularis	1	2	1,12±1,115	0,022±0,022	2,0	
4.	Dactylogyrus turalensis	5	18	5,62±2,44	0,202±0,095	3,60	
5.	Dactylogyrus crucifer	30	39	33,71±5,01	0,438±0,161	1,30	
6.	Dactylogyrus nanus	10	27	11,23±3,35	0,303±0,144	2,70	

SH440H35H45CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3CH3C								
7.	Paradiplozoon homoin	5	12	5,62±2,44	0,135±0,0602	2,40		
8.	Caryophyllaeus fimbriceps	0	0	0	0	0		
9.	Postdiplostomum cuticola	2	4	2,25±1,57	0,045±0,035	2,0		
10.	Asymphilidora kubanica	0	0	0	0	0		
11.	Contracaecum microcephalium	2	2	2,25±1,57	0,022±0,021	1,0		
		Оз	еро Каязды	, 23 экз.				
1.	Myxobolus cyprini	2	2	8,70±5,88	0,087±0,060	1,0		
2.	Myxobolus dispar	0	0	0	0	0		
3.	Myxobolus macrocapsularis	0	0	0	0	0		
4.	Dactylogyrus turalensis	8	23	34,78±9,93	1,0±0,52	2,875		
5.	Dactylogyrus crucifer	12	28	52,17±10,42	1,217±0,58	2,33		
6.	Dactylogyrus nanus	5	13	21,74±8,60	0,565±0,27	2,60		
7.	Paradiplozoon homoin	2	5	8,70±5,88	0,217±0,153	2,50		
8.	Caryophyllaeus fimbriceps	0	0	0	0	0		
9.	Postdiplostomum cuticola	0	0	0	0	0		
10.	Asymphilidora kubanica	0	0	0	0	0		
11.	Contracaecum microcephalium	0	0	0	0	0		
Озеро Жаланаш, 19 экз.								
1.	Myxobolus cyprini	0	0	0	0	0		
2.	Myxobolus dispar	1	1	5,26±5,12	0,053±0,053	1,0		
3.	Myxobolus macrocapsularis	2	2	10,53±7,04	0,105±0,072	1,0		
4.	Dactylogyrus turalensis	5	17	26,32±10,10	0,895±0,513	3,40		

80000	серия химико - Биологическая 67									
5.	Dactylogyrus crucifer	12	15	63,16±11,07	0,789±0,426	1,25				
6.	Dactylogyrus nanus	3	4	15,79±8,36	0,2105±0,123	1,33				
7.	Paradiplozoon homoin	1	2	5,26±5,12	0,105±0,105	2,0				
8.	Caryophyllaeus fimbriceps	0	0	0	0	0				
9.	Postdiplostomum cuticola	2	3	10,53±7,04	0,158±0,115	1,50				
10.	Asymphilidora kubanica	3	8	15,79±8,36	0,421±0,233	2,67				
11.	Contracaecum microcephalium	3	5	15,79±8,36	0,263±0,150	1,67				
	Озеро Раим, 18 экз.									
1.	Myxobolus cyprini	1	2	5,55±5,40	0,111±0,111	2,0				
2.	Myxobolus dispar	0	0	0	0	0				
3.	Myxobolus macrocapsularis	1	1	5,55±5,40	0,055±0,055	1,0				
4.	Dactylogyrus turalensis	0	0	0	0	0				
5.	Dactylogyrus crucifer	3	20	16,67±8,78	1,11±0,651	6,67				
6.	Dactylogyrus nanus	2	5	11,11±7,41	0,278±0,195	2,50				
7.	Paradiplozoon homoin	0	0	0	0	0				
8.	Caryophyllaeus fimbriceps	0	0	0	0	0				
9.	Postodiplostomum cuticola	0	0	0	0	0				
10.	Asymphilidora kubanica	0	0	0	0	0				
11.	Contracaecum microcephalium	6	10	33,33±11,11	0,555±0,364	1,67				

Таким образом, лещ и плотва, отловленные в озерах Камышлыбашской системы, имеют в составе паразитофауны по 11 видов паразитов. Общими для обоих видов рыб являются один вид одноклеточных (Myxobolus cyprini) и один вид трематод в стадии метацеркарии (Postodiplostomum cuticola). Остальные виды паразитов, хотя и не являются узкоспецифичными для

определенных видов рыб, видимо, распределяются по различным видам хозяев, используя их как свободную экологическую нишу. В результате этого конкурирующие виды паразитов распределяются по разным видам хозяев, избегая паразитарной перегрузки последних.

Опасных для человека возбудителей гельминтозоонозов у обоих видов рыб в Камышлыбашских озерах не зарегистрировано. Эпизоотологическое значение имеют плероцеркоиды лигулид и метацеркарии двух видов трематод, диссеминируемые через рыбоядных птиц, в первую очередь крупных чаек. Однако на естественных водомах массовое уничтожение чайковых птиц было бы неэтичным и экологически нецелесообразным. Для профилактики гельминтозов, имеющих эпизоотологическое значение для промысловых рыб, можно рекомендовать охрану биоразнообразия водных и околоводных живых организмов, чтобы диссеминаторы одних видов гельминтов выступали как элиминаторы других.

ЛИТЕРАТУРА

- 1. Котельников Г.А. Гельминтологические исследования животных и окружающей среды. М.: Колос, 1983. 208 с.
- 2. Агапова А.И. Паразиты рыб водсемов Казахстана. Алма-Ата, 1966. 343 с.
- 3. Беклемишев В.Н. Биоценологические основы сравнительной паразитологии. М.: Наука, 1970. 502 с.
- 4. Лакин Г.Ф. Биометрия >[Учеб. пособие для биол. спец. вузов М.: Высшая школа, 1980. 293 с.

Түйіндеме

Сырдария өзенімен косылған Қамышлыбаш көлінің жүйесінде кәсіпшілік балықтардың шабақ және тортаның паразиттерінің екі түріне зерттеу жасалған. Зерттеу арқылы әрбір балықтың 11 паразиті, 3 протозоа, 7 ішқұрттары шабақтың 1 паразиттік сүлік түрі, 3 протозоа мен 8 ішкұрттары анықталған.

Resume

The exploration of species composition of parasites in two industrial fish species - bream and roach - in Kamyshlybash lake system connecting with Syrdarja river was propounded. In the each fish species there were revealed 11 parasites species, including in bream - 3 protozoan, 7 helminthes, 1 parasitic leech species, in roach - 3 protozoan and 8 helminthes species. Common parasites for both fish species are 1 protozoan and 1 helminthes species.