УДК 621.311

МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИЗОЛЯЦИИ В СИММЕТРИЧНОЙ СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ НАПРЯЖЕНИЕМ ДО 1000 В

Б.Б. Утегулов, А.Б. Утегулов, А.Б. Уахитова, Б.М. Бегентаев

Павлодарский государственный университет им. С. Торайгырова

Сложные условия работы при эксплуатации горного электрооборудования напряжением до 1000 В в подземных и открытых горных работах отрасли способствуют ухудшению состояния изоляции сети. Анализ аварийных ситуации также показывает, что большое количество всех отключении и связанных с этим перерывов электроснабжения возникают из-за ухудшения состояния изоляции. Снижение уровня сопротивления изоляции электрической сети зачастую

приводит к пробою изоляции, таким образом, возрастает вероятность поражения обслуживающего персонала электрическим током, что в свою очередь способствует ухудшению уровня электробезопасности при эксплуатации электроустановок в рудничных электрических сетях.

Для проведения экспериментальных исследований в сетях напряжением до 1000 В, необходимо использовать метод определения параметров изоляции в трехфазной симметричной электрической сети с изолированной нейтралью напряжением до 1000 В. Разработанный метод основан на измерение величин модулей линейного напряжения

- $U_{\tilde{e}}$ и напряжения фаз $U_{\hat{A}}$, $U_{\hat{A}}$, $U_{\hat{N}}$ относительно земли после подключении активной дополнительной проводимости $g_{\hat{i}}$ между фазой A электрической сети и землей.

Для реализации метода разработана методика экспериментального исследования состояния изоляции в симметричной сети напряжением до 1000 В, которая поясняется схемой электрической принципиальной представленной на рисунке 1.

Схема электрическая принципиальная исследования параметров изоляции в сети напряжением до 1000 В, представлена на рисунке 1, и содержит: исследуемую трехфазную электрическую сеть с изолированной нейтралью, с фазами А, В и С; вольтметр PV1, измеряющий величину модуля линейного напряжения; вольтметр PV2, измеряющий величину модуля напряжения фазы А относительно земли при подключении дополнительной проводимости между фазой А электрической сети и землей; вольтметры PV3 и PV4, измеряющие величины модулей напряжения фазы В и С относительно земли; QF – выключатель нагрузки, коммутирующий активную дополнительную проводимость между одной из фаз сети и землей; активная дополнительная проводимость, подключа-

емая между одной из фаз сети и землей; емкостные проводимости изоляции сети $\,b_{\grave{A}}\,$

 $b_{\hat{A}},\ b_{\tilde{N}};$ активные проводимости изоляции сети $g_{\hat{A}},\ g_{\hat{A}},\ g_{\tilde{N}}.$

Для измерений величин модуля напряжения использован вольтметр Э-515 с кл. точности 0.5 и с пределами измерения напряжения $U=0\div500~B$.

В качестве активной дополнительной проводимости использованы сопротивления типа Π 3-200 с номинальной величиной R=1000 Ом.

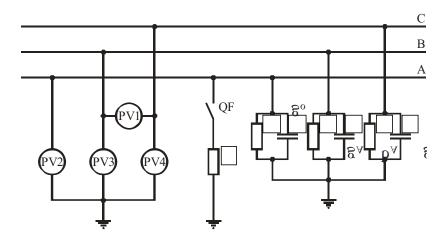


Рисунок 1 - Схема электрическая принципиальная исследования параметров изоляции в сети напряжением до 1000 В

Путем параллельно-последовательного соединения сопротивления ПЭ-200 мощность рассеивания составила 1,0 кВт, при этом для дополнительной проводимости определения параметров изоляции задана величина $R_1 = 1000 \; \mathrm{Om}$.

Экспериментальные исследования состояния изоляции в трехфазной симметричной сети напряжением до 1000 В проводятся по следующей программе.

- 1 Выбираются резервные ячейки выключателя нагрузки.
- 2 Проводится опробование на работоспособность выключателя нагрузки QF.
- 3 После проверки на работоспособность выключателя нагрузки QF произ-водится подготовка цепей подключения дополнительной проводимости \mathbf{g}_{i} .
- 4 К фазе А выключателя нагрузки QF подключается активная дополнительная проводимость, по которой определяются параметры изоляции фаз относительно земли.
- 5 В исследуемой сети, проверяется наличие показаний измерительных приборов.
- 6 После проверки исследуемой сети на наличие показаний измерительных приборов подключаются измерительные приборы PV1, PV2, PV3 и PV4, измеряющие величины модулей линейного напряжения и напряжения фаз A, B, C относительно земли.
- 7 После проведения работ по пунктам 4 и 6 производится регистрация значений измерительных приборов, которые подключены для проведения экспериментального исследования.

- 8 После проведения работ по пункту 7 выключателем нагрузки QF1 подключается активная дополнительная проводимость, вольтметрами PV1, PV2, PV3 и PV4, проводится измерение величин модулей линейного напряжения и напряжения фаз A, B, C относительно земли.
- 9 После проведения работ по пункту 8 производится отключение выключателя нагрузки QF и подготавливается схема для выполнения повторной работы по пункту 8.

С интервалом времени в 0.5 часа поочередно производятся работы по пунктам $7 \div 9$. После проведения работ с интервалом времени 0.5 часа и количеством измерений n=8 производится восстановление силовых цепей ячейки выключателя нагрузки QF и измерительных цепей.

По измеренным величинам модулей линейного напряжения и напряжения фаз относительно земли после подключении активной дополнительной проводимости между фазой А электрической сети и землей, а также с учетом величины активной дополнительной проводимости, определяются полная, емкостная и активная проводимости изоляции сети относительно земли по математическим зависимостям:

- полная проводимость изоляции электрической сети

$$y = \frac{\sqrt{3}U_{A}}{\sqrt{U_{\ddot{e}}^{2} + 3U_{A}^{2} - \sqrt{3[4U_{\ddot{e}}^{2}U_{A}^{2} - (U_{C}^{2} - U_{B}^{2})^{2}]}}}g_{o}$$

- емкостная проводимость изоляции электрической сети

$$b = \frac{U_{C}^{2} - U_{B}^{2}}{U_{\tilde{e}}^{2} + 3U_{A}^{2} - \sqrt{3[4U_{\tilde{e}}^{2}U_{A}^{2} - (U_{C}^{2} - U_{B}^{2})^{2}]}}g_{o}$$

- активная проводимость изоляции электрической сети

$$g = \sqrt{y^2 - b^2}$$

На основе полученных результатов определения полной, емкостной и активной проводимостей изоляции фаз электрической сети относительно земли, разрабатываются организационно-технические мероприятия, повышающие надежность системы внутреннего электроснабжения горных предприятий и обеспечивающие рост уровня электробезопасности при эксплуатации горных машин и установок напряжением до 1000 В.

Түйіндеме

Осы жұмыста Тау-кәсіпорындардың кернеуі 1000 В дейнгі торапта оңашалау параметрлерінің анықтама әдістемесі көрсетілген. Кернеуі 1000 В дейнгі Таулы машиналардың қанауы жанында және құрулардың Әдістеме электр қауіпсіздігі деңгейі өсу шегі жоғарылауына бағытталған.

Resume

In work presented strategy of determination parameters of insulating to network by the voltage before 1000 V mountain enterprises, which directed on increasing of growing of level electrical safety at usages of mountain machines and installation by the voltage before 1000 V.