A. T. MACEHOBA

СИНТЕЗ ПРИСАДОК МНОГОФУНКЦИОНАЛЬНОГО ДЕЙСТВИЯ К ОТРАБОТАННЫМ СМАЗОЧНЫМ МАСЛАМ

В Казахстане нелегально сбрасывается на почву и в водоемы до 70% всех отработанных масел. Исследования показали, что более 30% отработанного масла можно вернуть обратно в эксплуатацию [1–3]. Для этого необходимо очистить его, а затем легировать присадками. В настоящее время присадки к топливам и смазочным маслам завозятся из России по высокой цене (в среднем 2000 \$/т) и из дальнего зарубежья по более дорогим ценам. В Казахстане присадки не производятся. В то же время в республике имеется сырье в больших количествах, из которого можно производить присадки.

Целью статьи является разработка синтеза компонентов многофункциональных присадок к очищенным отработанным смазочным маслам на основе сырья Казахстана.

В КазНИТИЭР (г. Алексеевка Акмолинской области) разработана технология и собрана установка для очистки отработанных масел, которые после смешения с присадками можно возвращать в эксплуатацию. Для этих очищенных масел разработан синтез трех компонентов присадок – антиокислительного, антиизносного и диспергирующего действия.

Синтез антиокислительного компонента присадок. В качестве присадок исследовались почти все классы органических соединений, содержащих различные функциональные группы и элементы, однако только немногие из них проявили эффективность при добавлении в топлива. Применение азотсодержащих присадок оказывает антиокислительное и стабилизирующее действие на топливо [4].

П-оксидифениламин, эффективных одна самых присадок ИЗ антиокислительного действия, синтезируется конденсацией анилина и паминофенола, которые образуются нитрованием ароматических углеводородов коксохимического производства до нитросоединений [5, 6], подвергают ИХ гидрированию ДО аминов [7]. Синтез оксидифениламина состоит из трех этапов:

1. Процесс нитрования бензола и фенола с получением нитробензола и нитрофенола. В промышленности нитросоединения получают нитрованием ароматических углеводородов классическим методом — нитрующей смесью концентрированных азотной и серной кислот, что является экологически опасным и высококоррозийным процессом.

При нитровании бензола и фенола осуществляли замену жидкого кислотного катализатора — серной кислоты на другие менее агрессивные кислоты, такие, как уксусная, ортофосфорная и трифторуксусная.

Нитрование проводили в стеклянном нитраторе объемом 100 см^3 периодического действия, снабженном мешалкой и пробоотборником. Варьировали соотношение кислот и температуру реакции (табл. 1). Нитрование по классическому методу показало выход нитробензола 85%. По убыванию выхода нитробензола кислоты можно расположить в ряд: $H_3PO_4 > CH_3COOH > CF_3COOH$. Наибольший выход нитробензола 87% показан для смеси $HNO_3 + H_3PO_4$.

Следует отметить, что соотношение кислот также влияет на выход нитросоединения, причем по-разному для всех использованных кислот, но в основном наибольший выход нитробензола наблюдается при соотношении кислот 33%:67% (см. табл. 1). При изменении температуры от комнатной до 35°C выход нитробензола возрастает: для смеси азотной и уксусной кислот от 60 до 69%.

Фенол нитруется легче бензола, что объясняется электронным строением ароматического кольца этих соединений.

Таблица 1. Нитрование бензола различными кислотами

Кислоты Соотношение, % Т, °С Выход нитробензола, %

	$HNO_3 + CH_3COO$	Н	
	50:50	25	60
	33:67	35	_76
	20:80	35	73
$HNO_3 + CF_3COOH$	50:50	35	52
	33:67	35	73
	20:80	35	78
	$HNO_3 + H_3PO_4$		
	50:50	35	87
	33:67	35	82
	20:80	35	84
	$HNO_3 + H_2SO_4$		
	50:50	25	79
	33:67	35	85

Кроме мононитросоединений в катализате также обнаруживаются и динитросоединения от 1 до 7% в зависимости от исходного соединения.

В процессе нитрования бензола и фенола синтезированы нитросоединения с выходом до 90%. В качестве катализатора используется 85–89% фосфорная кислота. Наработаны опытные партии (0,5 кг) нитробензола и нитрофенола. Анализ полученного продукта проводили методом ГЖХ на хроматографе ЛХМ-80 с пламенно-ионизационным детектором.

2. Процесс гидрирования нитробензола и нитрофенола до анилина и паминофенола. Аминосоединения производились в промышленности некатали-тическим методом — восстановлением нитросоединений железными стружками в кислой среде, недостатками которого являются большие расходы сырья, длительность процесса, сложность выделения продукта и его низкое качество, большое количество отходов и сточных вод. Применение каталитического способа повышает производительность и экологическую чистоту процесса.

Каталитическое восстановление нитробензола и нитрофенола при повышенных давлениях водорода проводили на кинетической установке высокого давления (автоклав Вишневского объемом 300 см³) с герметичным электроприводом и турбинной мешалкой, вращающейся со скоростью 2800 об/мин с интенсивность перемешивания 40 тыс. Re. Опыты проводились в изобарно-изотермическом режиме. Растворитель — изопропанол. Количество катализатора — 5—6% от веса нитросоединения.

Гидрирование нитросоединений проводилось на нанесенных катализаторах на основе Pd как наиболее эффективных катализаторах. Исследования осуществлялись в двух направлениях: подбор носителя и модифицирование активной фазы переходными металлами. Изучено гидрирование нитробензола на палладиевых катализаторах, нанесенных на цеолиты HY, HZSM-5, MCM-41, и проведено сравнение с Pd/Al₂O₃ (табл.

2). Нанесение палладия на цеолиты приводит к резкому снижению скорости реакции и увеличению продолжительности процесса, за исключением НҮ. По уменьшению активности эти катализаторы располагаются в ряд: Pd/Al₂O₃>Pd/HY>Pd/HZSM-5>Pd/MCM-41.

На Pd/Al_2O_3 и Pd/HZSM-5 нитробензол селективно превращается в анилин с выходом 100%. На НҮ и МСМ-41 идет частичное гидрирование ароматического кольца и в продуктах обнаруживается до 7% циклогексиламина (см. табл. 2).

Хотя активность цеолитсодержащих катализаторов меньше, чем нанесенных на оксид алюминия, стабильность их превышает последний. Так внесение дополнительных навесок на одну навеску катализатора не изменяет скорости реакции: на НУ до 12 навесок, на HZSM-5 – 10, а на МСМ-41 – 9 навесок нитробензола.

Таблица 2. Гидрирование нитробензола на Pd-катализаторах при 1,0 МПа и 298 К

	Катализатор		Скорость,		
см ³ /мин	Продолжительность, мин		МИН	Выход, %	
				анилина	
	циклогекси	іламина			
$4\% \text{ Pd/Al}_2\text{O}_3$	225	5		100	_
4% Pd/HY	202	7		93	7
4% Pd/HZSM-5	62	32		100	_
4% Pd/MCM-41	53	35		97	3
$1\% \text{ Pd/Al}_2\text{O}_3$	58	20		100	_
1% Pd/HY	48	30		99	1
1% Pd/HZSM-5	25	75		100	_
1% Pd/MCM-41	18	98		99	1

В качестве модификаторов были выбраны более доступные, дешевые переходные металлы Fe, Ni, Cu, Cr, Ce, приготовленные совместным осаждением солей этих металлов на носитель. Соотношение активная фаза:модификатор изменялось от 1:9 до 9:1. За исключением Ni и Cr увеличение содержания металла выше 2–3 приводит к подавлению реакции в условиях эксперимента. Наименее активной добавкой оказалась медь, а наиболее активными — никель и хром. Модифицированные катализаторы по активности можно расположить в следующий ряд: Pd/Al₂O₃>Pd-Cr/Al₂O₃,Pd-Ni/Al₂O₃>Pd-Ce/Al₂O₃, Pd-Cu/ Al₂O₃.

Восстановлением нитробензола на самом активном катализаторе 1% Pd/HZSM-5 в жидкой фазе анилин синтезируется с выходом 99–100%.

По двум этапам (нитрование и гидрирование) приводим материальный баланс (табл. 3). Емкость нитратора – 100 см³, емкость автоклава – 300 см³, Т – 100°С (нитрование), 25°С (гидрирование). Продолжительность нитрования 70 мин, гидрирования – 50 мин. Конверсия бензола – 74%, выход нитробензола – 72%, конверсия нитробензола – 100%, выход анилина – 99%.

Таблица 3. Материальный баланс нитрования и гидрирования

Использовано за 1 цикл	Получено за 1 цикл
Бензол – 28,0 г	Нитробензол – 49,0 г
Этанол – 50,0 г	Анилин – 36,0 г
HZSM-5 – 0,5 г	Этанол – 45,0 г
PdCl ₂ - 0,0044 г	Потери при реакции – 2,43 г
RhCl ₃ 3H ₂ O – 0,0683 г	HZSM-5 – 0,5 г
Na ₂ CO ₃ 10H ₂ 0 – 1,5 Γ	PdCl ₂ – 0,0044 г
$Cr(NO_3)_3 - 34,0 \ \Gamma$	RhCl ₃ 3H ₂ O – 0,0683 г
Н ₂ -26,0 г	Na ₂ CO ₃ 10H ₂ 0 – 1,5 г
	Сг ₂ О ₃ – 7,0 г
Итого 100%	Итого 100%

3. Синтез п-оксидифениламина осуществляется конденсацией анилина и п-аминофенола по реакции:

$$C_6H_5-NH_2 + \pi-OH-C_6H_4-NH_2 \rightarrow \pi-C_6H_4-NH-C_6H_4-OH+NH_3.$$

В течение 2–3 ч в реактор добавляется дробно анилин до достижения мольного соотношения п-аминофенол:анилин 1:2,05(2,5) при повышении температуры со скоростью 3–10°С/ч. до 120°С. Непрореагировавший анилин отгоняется. В виде первой фракции из дистиллята удаляется побочный продукт – дифениламин, в виде второй – п-оксидифениламин в смеси с непрореагировавшим анилином, в виде третьей фракции – N,N'-дифенил-п-фенилендиамин. Целевой продукт – п-оксидифениламин выделяется из реакционной массы путем кристаллизации из растворителя, выход – до 85%.

Синтез антиизносного и диспергирующего компонентов присадок. Взаимодействие присадок с металлической поверхностью двигателя приводит к образованию защитной пленки, обеспечивающей противокоррозионные и противоизносные свойства [4]. Наличие в составе присадок металлов, таких, как кальций, магний, медь, барий и др., нейтрализует образующиеся продукты окисления масел и диспергирует

различные отложения в масле. Разработан синтез Li, Ca, Ba, Al, Cu, Ni солей жирных кислот соапстока на базе отходов масложиркомбинатов. Соли металлов и порошки меди, железа, кальция, бария и др. тоже имеются в Казахстане.

Соапсток хлопкового масла имеет состав жирных кислот: миристиновая C_{14} , пальмитиновая C_{15} , стеариновая C_{16} , олеиновая C_{17} , линолевая C_{18} . Показатели: 1) йодное число – 108, 2) кислотное число – 0,5, 3) влажность – 0,20, 4) содержание жирных кислот, %: пальмитиновая и др. до C_{14-22} – стеариновая – 2, олеиновая – 30-35, другие непредельные жирные кислоты – 40-45.

Процесс протекает по следующей реакции (в случае получения алюминиевой соли):

- 1) $Al_2(SO_4)_3 + 6KOH \rightarrow 2Al(OH)_3 + 3K_2SO_4$;
- 2) $Al(OH)_3 + C_{17}H_{35}COOH \rightarrow Al(C_{17}H_{35}COO)_3 + H_2O$.

Выходы солей составляют 70-95%.

6 Созданы композиций присадок антиокислительного, диспергирующего И противоизносного действия соотношением c синтезированных продуктов п-оксидифениламин: соль жирной кислоты (металл 1): соль жирной кислоты (металл 2) = 1:1:1. Наработаны опытные партии (по 2 кг) композиций присадок. Композиции составлялись с учетом данных по предварительно определенной растворимости полученных солей в масле ВМ-3, которая составляла 5-9 г/100 г растворителя. Процесс осуществляется в смесителе. Компоненты композиции нагреваются при 80-90°С в течение 40 мин до полного растворения компонентов.

Разработанные композиции многофункциональных присадок к отработавшим смазочным маслам прошли испытания на стенде в КазНИТИЭР сельскохозяйственной техники и показали хорошие результаты, удовлетворяющие стандартам для исходных смазочных масел.

ЛИТЕРАТУРА

- 1. Школьников В.М. Топлива, смазочные материалы, технические жидкости. Ассортимент и применение. ИЦ Техинформ, 1999. 596 с.
- 2. *Филоненко В.Ю., Корчагин В.А.* Регенерация отработанных масел природными слоистыми силикатами // Химия и химическая технология. 2003. Т. 46, вып. 5. С. 58-61.
- 3. Волкова Г.И. Очистка отработавшего моторного и дизельного масла // Химия нефти и газа: Материалы 6-й междунар. конф. г. Томск, 2007. С. 515-516.
- 4. Кулиев А.М. Химия и технология присадок к маслам и топливам. М: Химия, 1990. 342 с.
- 5. Sato H., Hiroge K., Nagai K. Nitration with nitric acid, montmorillonite and mixed metal oxides catalysts // Appl. Catal. A. 1998. V. 175, N 1-2. P. 201-207.
- 6. *Neri G., Musolino M.G., Rotondo E., Galvagno S.* Identification of 2-(hydroxyamino)-4-nitrotoluene (2Ha4Nt) as reaction intermediate // J. Mol. Catal. 1996. V. 111, N 3. P. 257-260.
- 7. Жандарев В.В., Казин В.Н., Копейкин В.В., Орлова Т.Н. Влияние катализатора на селективность жидкофазного восстановления хлорсодержащих ароматических нитросоединений // Изв. вузов. Сер. хим. и химич. технология. 1996. Т. 39, № 4-5. С. 81.