Б. Т. ЖУМАГУЛОВ, Н. М. ТЕМИРБЕКОВ, Н. М. ТЕМИРБЕКОВ

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ «СЛАБЫХ» РЕШЕНИЙ МНОГОМЕРНЫХ УРАВНЕНИЙ ГАЗОВОЙ ДИНАМИКИ

До быстродействующих параллельных появления И векторных компьютеров вычислительная гидродинамика изучала в основном задачи обтекания тел сравнительно простой формы [1-3]. Прогресс в этой области говорит о повышенном интересе к данному вопросу и связан с большим числом практических задач, моделирование которых осуществляется системами дифференциальных уравнений газовой динамики. В настоящее помощью современных методов вычислительной время С гидрогазодинамики исследуются течения газа и жидкости около тел реальной формы [4-6].

Условно существующие методы решения задач газовой динамики можно разделить на три класса: прямое численное моделирование (Direct Numerical Simulation, DNS), моделирование крупных вихрей (Large Eddy Simulation, LES) и решение осредненных по Рейнольдсу уравнений Навье-Стокса (Reynolds- Averaged Navier- Stokes, RANS).

Дальнейшая перспектива применения и развития метода конечных разностей имеет три основных направления. Первое направление связано с созданием новых алгоритмов решения разностных схем с высоким порядком точности и свойствами монотонности. Второе направление связано с техническими новациями с переходом к расчетам на современных параллельных и векторных компьютерах. Третье направление связано с дальнейшим развитием теории адаптивных сеток и приложением к решению задач аэрогидродинамики.

В последние годы для нахождения численными методами «слабых» решений уравнений газовой динамики разработан ряд эффективных

разностных схем. К ним принадлежат два класса гибридных схем: схемы монотонного типа TVD (Total Variation Diminishing) и неосциллирующие схемы ENO (Essentially Nonoscilatory). В этой статье разработана разностная схема для трехмерных уравнений газовой динамики для численного нахождения «слабого» решения.

Уравнение Навье–Стокса для сжимаемого газа, записанное в векторном виде и консервативной форме:

$$\frac{\partial \vec{U}}{\partial t} + \frac{\partial \vec{E}}{\partial x} + \frac{\partial \vec{F}}{\partial y} + \frac{\partial \vec{G}}{\partial z} = \frac{\partial \vec{E}_{V}}{\partial x} + \frac{\partial \vec{F}_{V}}{\partial y} + \frac{\partial \vec{G}_{V}}{\partial z} - \vec{f} . (1)$$

Компоненты векторов $\vec{U}, \vec{E}, \vec{F}, \vec{G}, \vec{E}_{V}, \vec{F}_{V}, \vec{G}_{V}, \vec{f}$ определяются
выражениями:

$$\vec{U} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \end{bmatrix}, \quad \vec{E} = \begin{bmatrix} \rho u \\ \rho u^{2} + P \\ \rho uv \\ \rho uw \end{bmatrix}, \quad \vec{F} = \begin{bmatrix} \rho v \\ \rho uv \\ \rho v^{2} + P \\ \rho vw \end{bmatrix}, \quad \vec{G} = \begin{bmatrix} \rho w \\ \rho uw \\ \rho vw \\ \rho w^{2} + P \end{bmatrix}, \quad \vec{f} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \rho g \end{bmatrix}, \quad (2)$$

$$\vec{E}_{v} = \begin{bmatrix} 0 \\ \frac{2}{3}\mu(2u_{x} - v_{y} - w_{z}) \\ \mu(u_{y} + v_{x}) \\ \mu(u_{z} + w_{x}) \end{bmatrix}, \quad \vec{F}_{v} = \begin{bmatrix} 0 \\ \mu(u_{y} + v_{x}) \\ \frac{2}{3}\mu(2v_{y} - u_{x} - w_{z}) \\ \mu(v_{z} + w_{y}) \end{bmatrix}, \quad \vec{G}_{v} = \begin{bmatrix} 0 \\ \mu(u_{z} + w_{x}) \\ \mu(w_{y} + v_{z}) \\ \frac{2}{3}\mu(2w_{z} - u_{x} - v_{y}) \end{bmatrix}.$$

 $P = \rho RT$ – уравнение состояния.

Здесь t – время; ρ – плотность; u, v, w – составляющие скорости в координатных направлениях x, y, z; P – давление; T – температура; R – универсальная газовая постоянная; μ – коэффициент вязкости.

Начальные и граничные условия. Рассматриваемая задача обтекания шара решается со следующими начальными и граничными условиями.

На входе заданы: u = 1, v = 0, w = 0.

На верхней и нижней границах расчетной области в направлении оси *у* задаются условия скольжения:

$$\frac{\partial u}{\partial y} = 0, \quad v = 0, \quad \frac{\partial w}{\partial y} = 0.$$

На выходе из расчетной области в направлении оси *x* для всех искомых функций ставятся «неотражающие» граничные условия. На боковых границах расчетной области в направлении оси *z* ставятся условия на твердой границе.

Начальные распределения плотности и гидростатического давления изменяются по экспоненциальному закону

$$P^* = \exp\left(-\frac{\gamma \cdot M^2}{Fr} \cdot x\right), \qquad \rho = \exp\left(-\frac{\gamma \cdot M^2}{Fr} \cdot x\right),$$

где $\gamma = \frac{c_p}{c_v}$ – отношение удельных теплоемкостей; $M = \frac{V_0}{(\gamma R T_0)^{1/2}}$ – число

Маха; $Fr = \frac{V_0^2}{gL}$ – число Фруда; V_0, L – характерная скорость и длина.

Систему уравнения (1) запишем в обобщенной системе координат. Для этого введем систему криволинейных координат в виде

$$\xi = \xi(x), \quad \eta = \eta(y), \quad \zeta = \zeta(z)$$
(3)

для сгущения сетки вблизи точки x_c, y_c, z_c :

$$\xi(x) = B_x + \frac{1}{\tau} \operatorname{arsh}\left[\left(\frac{x}{x_c} - 1\right) \cdot \operatorname{sh}(\tau \cdot B_x)\right],$$

$$\eta(y) = B_y + \frac{1}{\tau} \operatorname{arsh}\left[\left(\frac{y}{y_c} - 1\right) \cdot \operatorname{sh}(\tau \cdot B_y)\right], \quad (4)$$

$$\zeta(z) = B_z + \frac{1}{\tau} \operatorname{arsh}\left[\left(\frac{z}{z_c} - 1\right) \cdot \operatorname{sh}(\tau \cdot B_z)\right],$$

где

$$B_{x} = \frac{1}{2\tau} \ln \left[\frac{1 + (e^{\tau} - 1)(x_{c} / L)}{1 + (e^{-\tau} - 1)(x_{c} / L)} \right], \qquad B_{y} = \frac{1}{2\tau} \ln \left[\frac{1 + (e^{\tau} - 1)(y_{c} / L)}{1 + (e^{-\tau} - 1)(y_{c} / L)} \right],$$
$$B_{z} = \frac{1}{2\tau} \ln \left[\frac{1 + (e^{\tau} - 1)(z_{c} / L)}{1 + (e^{-\tau} - 1)(z_{c} / L)} \right], \qquad 0 < \tau < \infty.$$

Преобразование (4) отображает физическую плоскость (x, y, z) на вычислительную плоскость (ξ, η, ζ) (рис. 1).

Рис.1. а) физическая область, б) вычислительная область.

Для использования системы уравнений (1), (2) для задачи обтекания твердого тела применим метод фиктивных областей [7]. Для этого рассмотрим следующую вспомогательную задачу

$$\frac{\partial \vec{U}^{\varepsilon}}{\partial t} + \frac{\partial \vec{E}^{\varepsilon}}{\partial \xi} + \frac{\partial \vec{F}^{\varepsilon}}{\partial \eta} + \frac{\partial \vec{G}^{\varepsilon}}{\partial \zeta} = \frac{\partial \vec{E}_{V}^{\varepsilon}}{\partial \xi} + \frac{\partial \vec{F}_{V}^{\varepsilon}}{\partial \eta} + \frac{\partial \vec{G}_{V}^{\varepsilon}}{\partial \zeta} - \vec{f}$$
(5)

Компоненты векторов $\vec{U}, \vec{E}, \vec{F}, \vec{G}, \vec{E}_V, \vec{F}_V, \vec{G}_V, \vec{f}$ определяется выражениями

$$\vec{U}^{\varepsilon} = \begin{bmatrix} \rho^{\varepsilon} \\ \rho^{\varepsilon} u^{\varepsilon} \\ \rho^{\varepsilon} v^{\varepsilon} \\ \rho^{\varepsilon} w^{\varepsilon} \end{bmatrix}, \qquad \vec{E}^{\varepsilon} = \xi_{x} \cdot \begin{bmatrix} \rho^{\varepsilon} u^{\varepsilon} \\ \rho^{\varepsilon} u^{2\varepsilon} + P^{\varepsilon} \\ \rho^{\varepsilon} u^{\varepsilon} v^{\varepsilon} \\ \rho^{\varepsilon} u^{\varepsilon} w^{\varepsilon} \end{bmatrix}, \qquad \vec{F}^{\varepsilon} = \eta_{y} \cdot \begin{bmatrix} \rho^{\varepsilon} v^{\varepsilon} \\ \rho^{\varepsilon} u^{\varepsilon} v^{\varepsilon} \\ \rho^{\varepsilon} v^{2\varepsilon} + P^{\varepsilon} \\ \rho^{\varepsilon} v^{\varepsilon} w^{\varepsilon} \end{bmatrix},$$

$$\vec{G}^{\varepsilon} = \zeta_{z} \cdot \begin{bmatrix} \rho^{\varepsilon} w^{\varepsilon} \\ \rho^{\varepsilon} u^{\varepsilon} w^{\varepsilon} \\ \rho^{\varepsilon} v^{\varepsilon} w^{\varepsilon} \\ \rho^{\varepsilon} v^{\varepsilon} w^{\varepsilon} \\ \rho^{\varepsilon} w^{2\varepsilon} + P^{\varepsilon} \end{bmatrix}, \quad \vec{f}^{\varepsilon} = \begin{bmatrix} 0 \\ \frac{k^{\varepsilon}}{\varepsilon} \rho u^{\varepsilon} \\ \frac{k^{\varepsilon}}{\varepsilon} \rho v^{\varepsilon} \\ \frac{k^{\varepsilon}}{\varepsilon} \rho w^{\varepsilon} \end{bmatrix}, \quad \vec{E}^{\varepsilon}_{V} = \frac{\zeta_{x}}{J} \begin{bmatrix} 0 \\ \frac{2}{3} \mu (2\xi_{x} u_{\xi} - \eta_{y} v_{\eta} - \zeta_{z} w_{\zeta}) \\ \mu (\eta_{y} u_{\eta} + \xi_{x} v_{\xi}) \\ \mu (\zeta_{z} u_{\zeta} + \xi_{x} w_{\xi}) \end{bmatrix}, \quad \vec{H}^{\varepsilon} = \frac{\eta_{y}}{J} \begin{bmatrix} 0 \\ \mu (\eta_{y} u_{\eta} + \xi_{x} v_{\xi}) \\ \frac{2}{3} \mu (2\eta_{y} v_{\eta} - \xi_{x} u_{\xi} - \zeta_{z} w_{\zeta}) \\ \mu (\zeta_{z} v_{\zeta} + \eta_{y} w_{\eta}) \end{bmatrix}, \quad \vec{G}^{\varepsilon}_{V} = \frac{\zeta_{z}}{J} \begin{bmatrix} 0 \\ \mu (\eta_{y} u_{\eta} + \xi_{x} v_{\xi}) \\ \mu (\eta_{y} u_{\eta} + \xi_{z} v_{\zeta}) \\ \mu (\eta_{y} u_{\eta} + \xi_{z} v_{\zeta}) \\ \frac{2}{3} \mu (2\zeta_{z} w_{\zeta} - \xi_{x} u_{\xi} - \eta_{y} v_{\eta}) \end{bmatrix}. \quad (6)$$

 $P = \rho RT$ - уравнение состояния.

Где

$$k^{\varepsilon} = \begin{cases} 0 & npu \quad x, y, z \in D/D_0 \\ 1 & npu \quad x, y, z \in D_0 \end{cases}$$

 ε - малый параметр, D_0 - область, занятая препятствием (фиктивная область), $u^{\varepsilon}, v^{\varepsilon}, w^{\varepsilon}$ - значения соответствующих составляющих скорости на нижней границе (в дальнейшем знак ε для простоты опускается).

Чтобы записать все уравнения в строго дивергентной форме разделим уравнения на якобиан и группируем их, добавляя и вычитая одинаковые члены. Заменяя производные ξ_x, η_y, ζ_z обратными преобразованиями исходные уравнения запишем в следующем виде

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{1}{x_{\xi}} \frac{\partial \rho u}{\partial \xi} + \frac{1}{y_{\eta}} \frac{\partial \rho v}{\partial \eta} + \frac{1}{z_{\zeta}} \frac{\partial \rho w}{\partial \zeta} = 0 \\ \frac{\partial \rho u}{\partial t} &+ \frac{1}{x_{\xi}} \frac{\partial}{\partial \xi} (\rho u^{2} + P) + \frac{1}{y_{\eta}} \frac{\partial}{\partial \eta} (\rho uv) + \frac{1}{z_{\zeta}} \frac{\partial}{\partial \zeta} (\rho uw) = \frac{\partial}{\partial \xi} \left(\frac{2}{3Jx_{\xi}} \mu \left(\frac{2}{x_{\xi}} \frac{\partial u}{\partial \xi} - \frac{1}{y_{\eta}} \frac{\partial v}{\partial \eta} - \frac{1}{z_{\zeta}} \frac{\partial w}{\partial \zeta} \right) \right) + \\ &+ \frac{\partial}{\partial \eta} \left(\frac{\mu}{Jy_{\eta}} \cdot \left(\frac{1}{y_{\eta}} \frac{\partial u}{\partial \eta} + \frac{1}{x_{\xi}} \frac{\partial v}{\partial \xi} \right) \right) + \frac{\partial}{\partial \zeta} \left(\frac{\mu}{Jz_{\zeta}} \cdot \left(\frac{1}{z_{\zeta}} \frac{\partial u}{\partial \zeta} + \frac{1}{x_{\xi}} \frac{\partial w}{\partial \xi} \right) \right) - \frac{k^{\varepsilon}}{\varepsilon} \rho u^{\varepsilon} \\ \frac{\partial \rho v}{\partial t} &+ \frac{1}{x_{\xi}} \frac{\partial}{\partial \xi} (\rho uv) + \frac{1}{y_{\eta}} \frac{\partial}{\partial \eta} (\rho v^{2} + P) + \frac{1}{z_{\zeta}} \frac{\partial}{\partial \zeta} (\rho vw) = \frac{\partial}{\partial \xi} \left(\frac{\mu}{Jx_{\xi}} \cdot \left(\frac{1}{y_{\eta}} \frac{\partial u}{\partial \eta} + \frac{1}{x_{\xi}} \frac{\partial v}{\partial \xi} \right) \right) + \\ &+ \frac{\partial}{\partial \eta} \left(\frac{2}{3Jy_{\eta}} \mu \left(\frac{2}{y_{\eta}} \frac{\partial v}{\partial \eta} - \frac{1}{x_{\xi}} \frac{\partial u}{\partial \xi} - \frac{1}{z_{\zeta}} \frac{\partial w}{\partial \zeta} \right) \right) + \frac{\partial}{\partial \zeta} \left(\frac{\mu}{Jz_{\zeta}} \cdot \left(\frac{1}{y_{\eta}} \frac{\partial w}{\partial \eta} + \frac{1}{z_{\zeta}} \frac{\partial v}{\partial \zeta} \right) \right) - \frac{k^{\varepsilon}}{\varepsilon} \rho v^{\varepsilon} \\ &\frac{\partial \rho w}{\partial t} + \frac{1}{x_{\xi}} \frac{\partial}{\partial \xi} (\rho uw) + \frac{1}{y_{\eta}} \frac{\partial}{\partial \eta} (\rho vw) + \frac{1}{z_{\zeta}} \frac{\partial}{\partial \zeta} (\rho w^{2} + P) = \frac{\partial}{\partial \xi} \left(\frac{\mu}{Jx_{\xi}} \cdot \left(\frac{1}{z_{\zeta}} \frac{\partial u}{\partial \zeta} + \frac{1}{x_{\xi}} \frac{\partial w}{\partial \xi} \right) \right) + \\ &+ \frac{\partial}{\partial \eta} \left(\frac{\mu}{Jy_{\eta}} \cdot \left(\frac{1}{z_{\zeta}} \frac{\partial v}{\partial \eta} + \frac{1}{y_{\eta}} \frac{\partial w}{\partial \eta} \right) \right) + \frac{\partial}{\partial \zeta} \left(\frac{2}{3Jz_{\zeta}} \mu \left(\frac{2}{z_{\zeta}} \frac{\partial w}{\partial \zeta} - \frac{1}{x_{\xi}} \frac{\partial u}{\partial \xi} - \frac{1}{y_{\eta}} \frac{\partial w}{\partial \eta} \right) \right) - \frac{k^{\varepsilon}}{\varepsilon} \rho w^{\varepsilon} \end{aligned}$$

Определение промежуточного поле скорости, уравнении газовой динамики осуществлялось по обобщенной схеме типа Лакса- Вендроффа. Конечно- разностный аналог записывается следующим образом:

I этап:

$$\begin{split} \rho_{i+1/2,j+1/2,k+1/2}^{n+1/2} &= \rho_{i+1/2,j+1/2,k+1/2}^{n} - \frac{\tau}{2} \cdot \left[\frac{(\rho u)_{i+1/2,j+1/2,k+1/2}^{n} - (\rho u)_{j+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot x_{\zeta,i+1/2,j+1/2,k+1/2}} + \frac{(\rho u)_{i+1/2,j+1/2,k+1/2}^{n}}{h_{2} \cdot y_{\eta,j+1/2,k+1/2}} + \frac{(\rho u)_{i+1/2,j+1/2,k+1/2}^{n}}{h_{3} \cdot z_{\zeta,j+1/2,j+1/2,k+1/2}} \right] \\ &= \frac{1}{2\rho_{i+1/2,j+1/2,k+1/2}^{n+1/2}} \left(\rho_{i+1,j+1/2,k+1/2}^{n} \cdot u_{i+1,j+1/2,k+1/2}^{n} + \frac{(\rho u)_{j+1/2,k+1/2}^{n}}{h_{3} \cdot z_{\zeta,j+1/2,k+1/2}} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n}}{h_{3} \cdot z_{\zeta,j+1/2,k+1/2}} \right)^{2} - \rho_{i,j+1/2,k+1/2}^{n} \left(u_{i,j+1/2,k+1/2}^{n} \cdot u_{i+1/2,k+1/2}^{n} \right)^{2} \\ &= \frac{\tau}{2\rho_{i+1/2,j+1/2,k+1/2}^{n+1/2}} \left[\frac{\rho_{i+1,j+1/2,k+1/2}^{n} \left(u_{i+1,j+1/2,k+1/2}^{n} \cdot u_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + u_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}} \right)^{2} - \rho_{i,j+1/2,k+1/2}^{n} \left(u_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + u_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}} \right) \\ &= \frac{\sigma_{i+1/2,j+1/2,k+1/2}^{n} \left(P_{i+1,j+1/2,k+1/2}^{n} \cdot v_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}} \right) - \frac{\tau}{\rho_{i+1/2,j+1/2,k+1/2}^{n}} \left(P_{i+1/2,j+1/2,k+1/2}^{n} \cdot v_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}} \right) - \frac{\tau}{\rho_{i+1/2,j+1/2,k+1/2}^{n} \left(P_{i+1/2,j+1/2,k+1/2}^{n} \cdot v_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}} \right) - \frac{\tau}{\rho_{i+1/2,j+1/2,k+1/2}^{n}} \left(P_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}^{n}} \right) - \frac{\tau}{\rho_{i+1/2,j+1/2,k+1/2}^{n}} \left(P_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n} + \frac{\rho_{i+1/2,j+1/2,k+1/2}^{n}}{h_{1} \cdot z_{\zeta,i+1/2,j+1/2,k+1/2}^{n}} \right) - \frac{\tau}{\rho_{i+1/2,j+1/2,k+1/2}^{n}} \left(P_{i+1/2,j+1/2,k+1/2}^{n} + v_{i+1/2,j+$$

Вторая часть первого этапа:

$$\begin{split} \rho_{i,j,k}^{n+1} &= \rho_{i,j,k}^{n} - \tau \cdot \left[\frac{(\rho u)_{i+1/2,j,k}^{n+1/2} - (\rho u)_{i-1/2,j,k}^{n+1/2}}{h_{1} \cdot x_{\xi,i,j,k}} + \frac{(\rho v)_{i,j+1/2,k}^{n+1/2} - (\rho v)_{i,j-1/2,k}^{n+1/2}}{h_{2} \cdot y_{\eta,i,j,k}} + \frac{(\rho v)_{i,j,k+1/2}^{n+1/2} - (\rho v)_{i,j,k-1/2}^{n+1/2}}{h_{3} \cdot z_{\zeta,i,j,k}} \right] \\ \tilde{u}_{i,j,k}^{n+1} &= \frac{\rho_{i,j,k}^{n}}{\rho_{i,j,k}^{n+1}} \cdot u_{i,j,k}^{n} - \frac{\tau}{\rho_{i,j,k}^{n+1}} \cdot \left[\frac{\rho_{i+1/2,j,k}^{n+1/2} \left(u_{i+1/2,j,k}^{n+1/2}\right)^{2} - \rho_{i-1/2,j,k}^{n+1/2} \left(u_{i-1/2,j,k}^{n+1/2}\right)^{2}}{h_{1} \cdot x_{\xi,i,j,k}} + \frac{\rho_{i,j+1/2,k}^{n+1/2} \cdot v_{i,j+1/2,k}^{n+1/2} - \rho_{i,j-1/2,k}^{n+1/2} \cdot u_{i,j-1/2,k}^{n+1/2} \cdot v_{i,j-1/2,k}^{n+1/2}}{h_{2} \cdot y_{\eta,i,j,k}} + \frac{\rho_{i,j,k+1/2}^{n+1/2} \cdot u_{i,j+1/2,k}^{n+1/2} - \rho_{i,j,k-1/2}^{n+1/2} \cdot u_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2}}{h_{3} \cdot z_{\zeta,i,j,k}} \right] - \frac{\tau}{h_{1} \cdot \gamma M^{2} \rho_{i,j,k}^{n+1} \cdot x_{\xi,i,j,k}} \left(P_{i+1/2,j,k}^{n} - P_{i-1/2,j,k}^{n}\right) \right) + \frac{\rho_{i,j,k+1/2}^{n+1/2} \cdot u_{i,j,k+1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2}} + \frac{\rho_{i,j,k+1/2}^{n+1/2} \cdot u_{i,j,k+1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} - \rho_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} - \rho_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} + \frac{\rho_{i,j,k+1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2} \cdot$$

$$\begin{split} \tilde{v}_{i,j,k}^{n+1} &= \frac{\rho_{i,j,k}^{n}}{\rho_{i,j,k}^{n+1}} \cdot v_{i,j,k}^{n} - \frac{\tau}{\rho_{i,j,k}^{n+1}} \cdot \left[\begin{array}{c} \frac{\rho_{i+1/2,j,k}^{n+1/2} \cdot v_{i+1/2,j,k}^{n+1/2} \cdot u_{i+1/2,j,k}^{n+1/2} - \rho_{i-1/2,j,k}^{n+1/2} \cdot v_{i-1/2,j,k}^{n+1/2} \cdot u_{i-1/2,j,k}^{n+1/2} \\ h_{1} \cdot x_{\xi,i,j,k} \end{array} + \\ &+ \frac{\rho_{i,j+1/2,k}^{n+1/2} \left(v_{i,j+1/2,k}^{n+1/2} \right)^{2} - \rho_{i,j-1/2,k}^{n+1/2} \left(v_{i,j-1/2,k}^{n+1/2} \right)^{2}}{h_{2} \cdot y_{\eta,i,j,k}} + \\ &+ \frac{\rho_{i,j,k+1/2}^{n+1/2} \cdot v_{i,j,k+1/2}^{n+1/2} \cdot w_{i,j,k+1/2}^{n+1/2} - \rho_{i,j,k-1/2}^{n+1/2} \cdot v_{i,j,k-1/2}^{n+1/2} \cdot w_{i,j,k-1/2}^{n+1/2}}{h_{3} \cdot z_{\zeta,i,j,k}} \right] - \frac{\tau}{h_{2} \cdot \gamma M^{2} \rho_{i,j,k}^{n+1} \cdot y_{\eta,i,j,k}} \left(P_{i,j+1/2,k}^{n} - p_{i,j-1/2,k}^{n} \right) \end{split}$$

$$\begin{split} \tilde{w}_{i,j,k}^{n+1} &= \frac{\rho_{i,j,k}^{n}}{\rho_{i,j,k}^{n+1}} \cdot w_{i,j,k}^{n} - \frac{\tau}{\rho_{i,j,k}^{n+1}} \cdot \left[\frac{\rho_{i+1/2,j,k}^{n+1/2} \cdot w_{i+1/2,j,k}^{n+1/2} \cdot u_{i+1/2,j,k}^{n+1/2} - \rho_{i-1/2,j,k}^{n+1/2} \cdot w_{i-1/2,j,k}^{n+1/2} \cdot u_{i-1/2,j,k}^{n+1/2}}{h_{1} \cdot x_{\xi,i,j,k}} + \frac{\rho_{i,j+1/2,k}^{n+1/2} \cdot w_{i,j+1/2,k}^{n+1/2} - \rho_{i,j-1/2,k}^{n+1/2} \cdot w_{i,j-1/2,k}^{n+1/2} \cdot v_{i,j-1/2,k}^{n+1/2}}{h_{2} \cdot y_{\eta,i,j,k}} + \frac{\rho_{i,j,k+1/2}^{n+1/2} \left(w_{i,j,k+1/2}^{n+1/2} \right)^{2} - \rho_{i,j,k-1/2}^{n+1/2} \left(w_{i,j,k-1/2}^{n+1/2} \right)^{2}}{h_{3} \cdot z_{\zeta,i,j,k}} \right] - \frac{\tau}{h_{3} \cdot \gamma M^{2} \rho_{i,j,k}^{n+1} \cdot z_{\zeta,i,j,k}} \left(P_{i,j,k+1/2}^{n} - p_{i,j,k-1/2}^{n} \right) \end{split}$$

 $P_{i,j,k}^{n+1} = \rho_{i,j,k}^{n+1} \cdot R \cdot T$

Теперь напишем разностный аналог II -го этапа:

Для компоненты и:

$$u_{i,j,k}^{n+1} = (\widetilde{u}_{i,j,k}^{n+1} + \tau \frac{F_{x,i,j,k}}{\rho_{i,j,k}^{n+1}}) / (1 + k_{i,j,k}^{\varepsilon} / \varepsilon)$$

Для компоненты v:

$$\upsilon_{i,j,k}^{n+1} = (\widetilde{\upsilon}_{i,j,k}^{n+1} + \tau \frac{F_{y,i,j,k}}{\rho_{i,j,k}^{n+1}}) / (1 + k_{i,j,k}^{\varepsilon} / \varepsilon)$$

Для компоненты w:

$$w_{i,j,k}^{n+1} = (\widetilde{w}_{i,j,k}^{n+1} + \tau \frac{F_{z,i,j,k}}{\rho_{i,j,k}^{n+1}}) / (1 + k_{i,j,k}^{\varepsilon} / \varepsilon)$$

где $F_{x,i,j,k}, F_{y,i,j,k}, F_{z,i,j,k}$ – разностные аналоги вязких членов уравнений движения для соответствующих компонент вектора скорости u, v, w

Поле давления определяется из уравнения состояния $P_{i,j,k}^{n+1} = R \cdot T \cdot \rho_{i,j,k}^{n+1}$, $i = 0,1,...,n_1; \quad j = 0,1,...,n_2; \quad k = 0,1,...,n_3.$

Приведем результаты методических расчетов обтекания шара. Параметрам потока присваивались следующие значения: $\mu_x = 0.31, \mu_y = 0.131, \mu_z = 0.131$, R = 287.1 дж/кг·К, $\gamma = 1.4$

рис.2. Профиль составляющей скорости U при $x_1 = 0,7, x_1 = 1,03, M = 0,6$

рис.3. Профиль составляющей скорости V при $x_1 = 0,7$, $x_1 = 1,03$, M = 0,6

Рис.4. Профиль составляющей скорости W при $x_1 = 0,7$, $x_1 = 1,03$, M = 0,6

На рис.2 приведены профили скорости U на сечении области интегрирования плоскостями $x_1 = 0,7, x_1 = 1,03$. На рисунках 3,4 приведены профили других составляющих скорости на этих же сечениях.

Для визуализации мгновенной картины течения используется модуль вихря скорости: $\Omega = |\nabla \times V| = (\Omega_x^2 + \Omega_y^2 + \Omega_z^2)^{1/2}$, где $\Omega_x, \Omega_y, \Omega_z$ – составляющие вихря в координатных направлениях x, y, z соответственно.

Движение элементарного объема складывается из поступательного движения со скоростью $\vec{V}(u,v,w)$, определяемой какой-либо точкой этого объема, принимаемой за полюс, и вращательного движения вокруг мгновенной оси с вектором угловой скорости $\Omega = rot \vec{V}$.

На рис. 5 проиллюстрированы вихревые линии, в каждой точке которых касательная совпадает по направлению с вектором $\vec{\Omega}$. Как видно из результатов расчетов получается вихревая поверхность охватывающий шар.

На рис. 6 приведены поле вектора скорости. Эти векторы направлены по касательной к линии тока. По результатам расчетов трехмерной модели, проводя линии тока, получается поверхность тока, заключающий внутри себя часть газа, называемая трубкой тока.

0.00

0.00

0.20

0.40

0.60

0.80

Рис.6. Поле вектора скорости.

1.00

1.20

1.40

1.60

1.80

2.00

Рассмотрен метод Лакса- Вендроффа применительно к трехмерным газовой динамики многосвязных областях. Показана задачам В возможность использования метода для задач с взаимодействием разрывов, когда необходимо их выделение. Автоматически сгущаются узлы сетки к особенностям расположения препятствия. На примере тестовой задачи (обтекания шара) показана эффективность И применимость предлагаемого подхода.

ЛИТЕРАТУРА

1. Годунов С.К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Математический сборник. 1959. т. 47, №3, с. 271-306

2. *Самарский А.А., Попов Ю.П.* Разностные методы решения задач газовой динамики. - М. Наука, 1992, 424 с.

3. Белоцерковский О.М., Андрущенко В.А., Шевелев Ю.Д. Динамика пространственных вихревых течений в неоднородной атмосфере. - М.: «Янус-К», 2000. - 456с.

4. Шевелев Ю.Д., Сызранов Н.Г., Андрущенко В.А., Михалин В.А., Максимов Ф.А. Решение задач проектирования летательных аппаратов на многопроцессорных вычислительных комплексах. // Математическое моделирование . 2007, т.19, с. 25-38

5. *Бреславский П.В., Мажукин В.И.* Моделирование взаимодействия ударных волн на динамически адаптирующихся сетках // Математическое моделирование. 2007, т.19,№11, с.83-95

6. Волков К.Н. Расчет свободного слоя смещения на основе метода моделирования крупных вихрей // Математическое моделирование. 2007, т.19, №9, с.114-128

7. Смагулов Ш.С., Данаев Н.Т., Темирбеков Н.М. Моделирование краевых условий для давления и полного напора в задачах гидродинамики с помощью метода фиктивных областей // Доклады Академии Наук России. - 2000. - т.374, №3 - с.333-335