ҚазККА Хабаршысы № 1 (62), 2010

0.3788	0.3949	0.3638	1	1	1
0.2534	0.3724	0.5826	1	1	1
0.3639	0.6217	0.7800	1	1	1
0.7755	0.2675	0.2955	1	1	1
0.3228	0.8629	0.7631	1	1	1
0.5077	0.4227	0.0003	1	1	1
0.2930	0.0769	0.7056	1	1	1
0.8850	0.6846	0.0323	1	1	1
0.7623	0.5703	0.2308	1	1	1
0.8037	0.5213	0.4187	1	1	1
0.9544	0.1151	0.2134	1	1	1
0.5111	0.6601	0.9996	1	0	0
0.3660	0.3197	0.0747	1	1	1
0.4883	0.6891	0.3781	1	1	1
0.1010	0.9902	0.0241	1	1	1
0.4985	0.4854	0.9960	1	0	0
0.8004	0.4643	0.1683	1	1	1
0.2217	0.5772	0.8826	1	0	0

Выволы

Результаты имитации являются случайными величинами. Поэтому при решении практических задач очень важна оценка математического ожидания и построение доверительных интервалов.

В работе мы привели конкретные примеры по аналитическим и имитационным моделированиям и оценку вероятности безотказной работы приведенной схемы.

ЛИТЕРАТУРА

- 1. Акулиничев и др. Математические методы в эксплуатации ж/д. М., Транспорт, 1971, 208 с.
- 2. Акулич И.Л. Математическое программирование в примерах и задачах. М., Высшая школа, 1974, 319 с.
- 3. Бикел П., Доксам К. Математическая статистика / Пер. с англ., вып.1. М., Финансы и статистика, 1983, 278 с.
 - 4. Ташев А.А., Каракулов А.К. Математическое программирование. Алматы, Бастау, 2001, 198 с.
- 5. Прицкер А. Введение в имитационное моделирование и язык СЛАМ II., Пер. с англ. М., Мир, 1987, 646 с.

УДК 681.3.06

Утепбергенов Ирбулат Туремуратович — д.т.н., профессор (Алматы, КазАТК) Коновалова Аза Павловна — соискатель (Алматы, КазАТК) Кенжебаева Жаннат Елубаевна — соискатель (Алматы, КазНТУ)

АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ СИНТЕЗА ОПТИМАЛЬНОЙ СТРУКТУРЫ ПРОГРАММНЫХ МОДУЛЕЙ ПО ОБЩЕСИСТЕМНОМУ КРИТЕРИЮ

Для решения оптимизационной задачи синтеза оптимальной структуры программных модулей по общесистемному критерию возможно применение следующих методов:

- переборного;
- локально-градиентного;
- генетических алгоритмов.

Достоинство двух первых методов — быстрый поиск оптимального решения в задачах с единственным локальным максимумом. Однако существенным их недостатком является сложность в решении мультимодальных и многомерных задач, к числу которых относится решаемая задача. Поэтому выбор осуществлен в пользу третьего метода.

Метод генетического алгоритма. Генетический алгоритм оптимизации (ГАО) представляет собой комбинированный метод, находящий все более широкое применение во многих прикладных областях, где приходится решать задачи синтеза.

Генетический алгоритм — способ решения задач оптимизации, использующий для поиска оптимального решения принципы эволюционного развития. Основной механизм эволюции обладает двумя наиболее характерными чертами. Во-первых, новые особи, появляющиеся в некоторой популяции, наследуют свойства своих родителей, причем в равных долях (механизм генетического скрещивания и наследования). Во-вторых, с некоторой вероятностью в течение своей жизни особи могут изменять свои свойства (гены), т.е. мутировать. Эти черты положены в основу генетических алгоритмов оптимизации (ГАО).

ГАО представляет собой метод параллельного поиска глобального экстремума, основанный на использовании в процессе поиска сразу нескольких закодированных соответствующим образом точек (вариантов решения), которые образуют развивающуюся по определенным случайным законам популяцию [1-3].

Главное отличие ГАО от традиционных методов поиска оптимального решения состоит в том, что на каждом своем шаге вычислений, данный алгоритм имеет не с одним, а с несколькими значениями вектора оптимизируемых параметров, которые образуют популяцию хромосом.

ГАО представляет собой метод стохастической оптимизации вида:

$$\max_{s} f(s), \text{при условии } s \in \Omega = \{0,1\}^n, \tag{1}$$

где функция $f:\Omega \to R$ называется функцией пригодности; s-n- мерный двоичный вектор Ω — называемый хромосомой или двоичной нитью длины n; $\Omega = \left\{0,1\right\}^n$ — множество вершин n- мерного гиперкуба с ребром равным 1; $R = (-\infty, +\infty)$ — множество действительных чисел.

Обобщенный ГАО представлен на рисунке 1.

Для начала процедуры поиска (блок 1) создается начальная популяция S(0) из M двоичных хромосом: $S(0) = \{L_1, L_2, ..., L_m\} \subset \Omega$, каждая из которых содержит n бит.



Рисунок 1. Генетический алгоритм оптимизации

Такая популяция создается случайным образом, так как неизвестно, где в Ω находится оптимальное решение. Каждая особь характеризуется *хромосомой*, представляющей собой L-битную строку, где L- длина хромосомы особи. Данная величина является фиксированной и одинаковой для всех особей. Длина хромосомы зависит от требуемой точности нахождения оптимальной величины параметра $V = P_E$ и должна удовлетворять условию:

$$n \ge \log_2\left(\frac{V_{\text{max}} - V_{\text{min}}}{\Delta}\right),\tag{2}$$

где V_{max} и V_{min} – максимальное и минимальное значение параметра V ;

 Δ — заданная погрешность определения оптимального значения параметра V .

Количество M индивидуумов в популяции влияет на широту поиска и задается следующим образом:

$$n \le M \le 2n,\tag{3}$$

где *п* – длина хромосомы.

Каждый бит хромосомы называется геном.

Для практических расчетов следует использовать нормированное представление функции пригодности $f:\Omega \to [0,1]$, получаемое из исходной функции f(s) путем линейного преобразования (масштабирования):

$$f = \frac{f(s) - f_{\min}}{f_{\max} - f_{\min}},\tag{4}$$

где f_{\max} и f_{\min} максимальное и минимальное значения функции f .

Используя начальную популяцию S(0), можно перейти к вычислению последующих популяций S(1), S(2), S(3) и т.д., применяя три генетических оператора скрещивания, мутации, отбора [4,5].

Оператор скрещивания (кроссовера) является основным генетическим оператором (блок 2), который выполняет функцию обмена генетическим материалом между особями и, тем самым, моделирует процесс скрещивания особей. Оператор применяется к паре хромосом из популяции. Для определенности считается, что количество хромосом четное. После этого выбирается случайным образом точка кроссовера, и биты из двух выбранных хромосом меняются местами с вероятностью $P_{c\kappa p}$. Этот процесс повторяется для всех хромосом из популяции, пока она не окажется пустой. Диапазон изменения вероятности осуществления скрещивания определяется $0.6 \le P_{c\kappa p} \le 0.99$.

Процесс скрещивания состоит в том, что случайным образом определяется, в которой обе хромосомы делятся на две части и обмениваются ими. Эта точка называется *точкой кроссовера*.

На рисунке 2 показан вариант одноточечного кроссовера, в этом случае родительские хромосомы разрезаются только в одной случайной точке.

Оператор мутации (блок 3) предназначен для изменения популяции в локальном экстремуме и способствует защите от преждевременной сходимости. Достигается это за счет инверсии случайно выбранного бита в хромосоме.

Целью оператора мутации является повышение разнообразия поиска и введение новых хромосом в популяцию, для того чтобы более полно использовать пространство поиска, поскольку количество членов популяции M обычно выбирается значительно меньше, по сравнению с общим числом (2^n) возможных хромосом в пространстве поиска Ω .

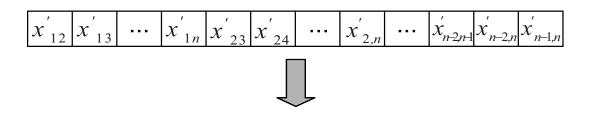
x'_{12}	x'_{13}	x'_{1n}	x'_{23}	x 24	$x'_{2,n}$	$\overset{'}{x_{n-2,n-1}}$	$x'_{n-2,n}$	$x'_{n-1,n}$
$x_{12}^{"}$	x''_{13}	$x^{''}_{1n}$	$x^{''}_{23}$	$x^{"}_{24}$	$\left[x^{"}_{2,n}\right]$	$x_{n-2,n+1}^{"}$	$x^{''}_{n-2,n}$	$x^{''}_{n-1,n}$

$L_{\scriptscriptstyle 1}^{^*}$	$x_{12}^{"}$	$x_{13}^{"}$	$x^{"}_{1n}$	$x^{"}_{23}$	$x^{"}_{24}$	$x'_{2,n}$	$x'_{n-2,n-1}$	$x'_{n-2,n}$	$x'_{n-1,n}$
L_2^*	x'_{12}	x'_{13}	x'_{1n}	x'_{23}	x'_{24}	$\left x^{''}_{2,n}\right $	$x_{n-2,n+1}^{''}$	x" _{n-2,n}	$x^{''}_{n-1,n}$

Рисунок 2. Оператор скрещивания

Следовательно, мутация вносит разнообразие в популяцию, позволяя просматривать больше точек в пространстве поиска. С другой стороны, частое применение мутации приводит к разрушению хромосом с высокой приспособленностью в популяции, что влияет на сходимость, поэтому применение мутации осуществляется с малой вероятностью $0.001 \le P_{\text{мут}} \le 0.01$.

Работа данного оператора представлена на рисунке 3.



$$\begin{bmatrix} x'_{12} & x'_{13} & \cdots & x'_{1n} & x'_{23} & x'_{24} & \cdots & \overline{x'}_{2,n} & \cdots & x'_{n-2,n} & x'_{n-2,n} & x'_{n-1,n} \end{bmatrix}$$

Рисунок 5. Оператор мутации

Оператор отбора (блок 4) определяет, каким образом следует строить популяцию следующего поколения. Вероятность участия индивидуума в скрещивании берется пропорционально его приспособленности. Приспособленность индивидуума соответствует значению целевой функции на этом индивидууме.

Существует несколько наиболее распространенных стратегий отбора: пропорциональный отбор, турнирный отбор, отбор усечением, рулеточный отбор, принцип элитизма.

В общем случае отбор производится на основании анализа вероятностей $p(s_i)$, вычисленных для каждого индивидуума популяции.

Каждый индивидуум в популяции проранжирован в соответствии со значениями функции пригодности, т.е. расположены в порядке убывания $f(s_i)$: $f(s_1) \ge f(s_2) \ge ... \ge f(s_m)$, где i – ранг индивидуума в популяции.

В качестве метода отбора, при проведении исследований воспользуемся методом "колеса рулетки". При этом методе отбора хромосомы — кандидаты из t-го поколения S(t) выбираются для выживания в следующем (t+1)-м поколении S(t+1) путем использования колеса рулетки, где каждая хромосома $S_i(t)$ в популяции представлена в колесе в виде сектора, ширина которого пропорциональна соответствующему значению функции пригодности $f(s_i)$.

Таким образом, хромосомы, которые имеют большую пригодность, соответствуют большему сектору на колесе и хромосомы с меньшим значением функции пригодности получают меньший сектор. Процедура отбора сводится к вращению колеса рулетки M раз (равное соответствующему количеству хромосом в популяции) и выбора в качестве кандидатов в следующее поколение тех хромосом $S_1, S_2, ..., S_m$, которые выпадут после вращения рулетки.

Для каждой хромосомы S_i в популяции ее пригодность оценивается с помощью функции $f(s_i)$. Доля на колесе f_i , выделенная для i-ой хромосомы S_i вычисляется по формуле:

$$f_i = \frac{f(s_i)}{\sum_{j=1}^{M} f(s_j)},$$
(5)

где $f(s_i)$ — функция пригодности s_i хромосомы, $f(s_j)$ — функция пригодности s_j хромосомы, входящей в популяцию M. Пример реализации отбора методом "колеса рулетки" представлен на рисунке 3.

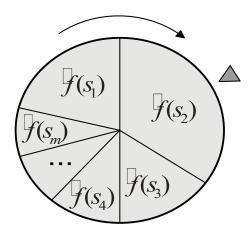


Рисунок 3. Реализация метода отбора "колесом рулетки"

Выбранные таким образом, хромосомы, являются кандидатами для следующей популяции. В этом случае в зависимости от значения функции пригодности к ним либо применяются операторы скрещивания и мутации, либо процесс поиска останавливают.

ГАО прекращает свою работу в следующих случаях (блоки 5, 6 и 7):

- 1) найдено оптимальное решение;
- 2) закончилось время работы алгоритма;
- 3) популяция долгое время не прогрессирует.

Считается, что сходимость алгоритма достигнута, если не менее 80% хромосом совпадают, т.е. имеют один и тот же вид. Пример максимизации представлен на рисунке 4.

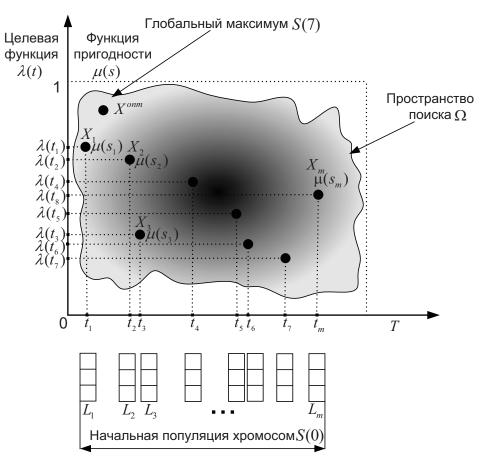


Рисунок 4. Пример оптимизации с использованием генетического метода оптимизации

Каждое решение, полученное с помощью генетического алгоритма, будет иметь следующую структуру:

1. Точка в пространстве параметров (фенотип):

$$X = (X_1, X_2, ..., X_M) \in T$$
 из R^N . (6)

2. Бинарная строка s фиксированной длины, однозначно идентифицирующая гиперкуб пространства параметров (генотип):

$$s = (l_1, l_2, ..., l_I) \in S. \tag{7}$$

где S — пространство представлений — бинарных строк длины I .

3. Скалярная величина μ , соответствующая значению целевой функции в точке t (приспособленность):

$$\mu = \lambda(t). \tag{8}$$

Выводы

Таким образом, применение метода ГАО позволяет достаточно эффективно решить задачу синтеза оптимальной структуры программных модулей.

ЛИТЕРАТУРА

- 1. Батищев Д.И. Генетические алгоритмы решения экстремальных задач. Учебное пособие.- Нижний Новгород, 1995. 63с.
 - 2. Дубинин Н.П. Общая генетика. М: Наука, 1976. 572с.
- 3. Скурихин А.Н. Генетические алгоритмы.// Новости искусственного интеллекта, 1995. №4. с.6-46.
 - 4. Исаев С. Популярно о генетических алгоритмах http://home.od.ua /~relayer/algo/neuro/ga-pop/.
- 5. Teo M.Y., Khoo L.P., Sim S.K. Application of Genetic Algorithms to Optimise Neocognitron Network Parametrs. In Neural Network World, Vol.7, No 3. 1977. PP. 293-303.

УДК 62-505:504.064

Туленбаев Мурат Сауранбаевич – к.т.н., доцент (Тараз, ТарГУ)

СПЕКТРАЛЬНЫЕ ПРЕДСТАВЛЕНИЯ И ПЕРВИЧНАЯ ОБРАБОТКА СИГНАЛОВ ХИМИКО-АНАЛИТИЧЕСКИХ КОМПЛЕКСОВ ЭКОМОНИТОРИНГА

Информационная система экологического мониторинга обычно осуществляет съем данных об окружающей среде с передвижных и стационарных пунктов наблюдений, оснащенных высокоинформативными химико-аналитическими комплексами (ХАК), включающими хроматографы, спектрометры, рентгенофлуориметры и др. Определяющим в их использовании является интеллектуальная составляющая химического анализа (методики, программный продукт, эргономика). В связи с этим, вопросы разработки математического, программного и метрологического обеспечения ХАК остаются весьма актуальными.

Выходной сигнал аналитического прибора ХАК y(t) в большинстве случаев можно рассматривать как аддитивную смесь полезного сигнала $s(t, \mathbf{l})$, помехи n(t) и базисного сигнала (или т.н. дрейфа) d(t)[1]: