

1 и 2 – камеры устройства; 3-4 – электроды; 5 – высоковольтный источник питания; 6 – генератор высокочастотного напряжения; 7 – преобразователь тока; 8 – балансная схема разности напряжений; 9 – микропроцессор; R_5 – балансное сопротивление; C_1 , C_2 – разделительные емкости. Рисунок 1 – Устройство для диагностики плазмы коронного разряда

Выволы:

- 1. По значению резонансной частоты можно определить размер толщины чехла короны, причем в этом случае влияние формы переменного сигнала на точность измерения исключается.
- 2. Диагностика плазмы коронного разряда позволяет определить плазменные параметры чехла стационарного коронного разряда, от которого зависит выход озона.

ЛИТЕРАТУРА

- 1. Предпатент 14033 РК. Устройство для диагностики плазмы коронного разряда. /Боканова А.А. и др.; опубл. 16.02.2004, Бюл. № 2. -4 с.
- 2. Боканова А.А., Бокова Г.И., Баймаханова З.А., Сыдыкова Г.К. Методика определения плазменных параметров чехла положительной короны. –Алматы: Вестник АГУ им. Абая, 2003. №1. –С.87-89.
- 3. Боканова А.А. Создание теоретических и технологических основ озонной технологии для очистки и обеззараживания воды: дис.... докт. Наук. –Алматы, 2010. 327с.

УДК 669.712.2; 661. 862. 32; 628.335

Мусина Умут Шайхисламовна – к.т.н., доцент (Алматы, Казахский национальный технический университет им. К.И. Сатпаева)

МИКРОАНАЛИЗ КОКСУСКИХ ШУНГИТИСТЫХ ПОРОД

В настоящее время известно, что шунгиты являются перспективным сырьем многоцелевого назначения: как восстановитель в металлургии; композиционная добавка в производстве резинотехнических изделий; теплоизоляционный материал в строительстве; удобрение и кормовая добавка в сельском хозяйстве; лечебный препарат в медицине; сорбент, фильтрант, реагент, дезактиватор в экологии и др. [1, 2].

Область применения коксуских шунгитов зависит от их физико-химических свойств.

Существует классификация шунгитовых пород с силикатной минеральной основой: малоуглеродистые шунгитсодержащие (до 5 % C), среднеуглеродистые шунгитистые (5– 25 % C) и высокоуглеродистые шунгитовые (25–80 % C).

Одной из причин, объясняющих особенности поведения шунгита в различных средах, является наличие углерода в промежуточном между кристаллическим и аморфным состоянием.

Ранее химическим и рентгенографическим методами анализа установлено усредненное количество углерода, находящееся в пределах 6–18 %. Однако для более достоверного определения количества углерода в составе коксуских шунгитов был использован метод микроанализа с получением РЭМ-дифрактограмм.

С помощью низковакуумного растрового электронного микроскопа Jeol JSM-6490 LA в комплекте с системой энергодисперсионного рентгеновского микроанализа исследованы образцы коксуских сланцев: кварц-мусковит-углеродистого (образцы КМ) и мусковит-кварц-углеродистого гидротермально измененного (образцы МКГ).

Было проанализировано 4 образца: №№ 1 и 2 — кварц-мусковит-углеродистый сланец (КМ); №№ 3 и 4 — мусковит-кварц-углеродистый гидротермально измененный сланец (МКГ).

Рассмотрим исследования, проведенные на образце №1 КМ. Результаты представлены на рисунке 1 в виде микрофотографий и элементных РЭМ-дифрактограмм.

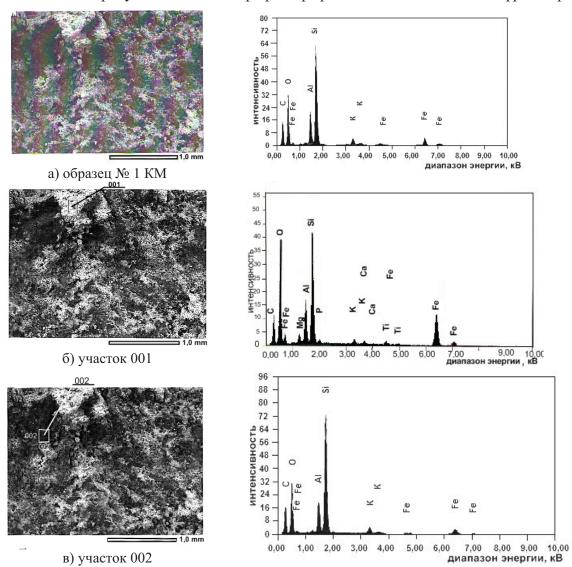
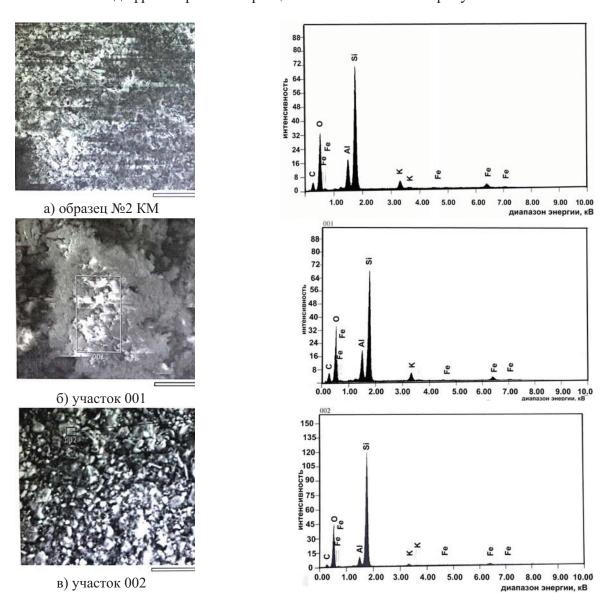


Рисунок 1 – Электронно-микроскопическое исследование образца № 1 КМ с диаграммами результата полуколичественного фазового анализа рентгенограммы (чувствительность 0,5)

Результаты исследований элементного состава образца №1 KM на основе РЭМ представлены в таблице 1.


Таблица 1 – Элементн	ый состав образ	вца №1 КМ на основе РЭМ	Λ

Исследуемый		Содержание, масс.%									
объект	С	A1	Si	K	Fe	O	Mg	P	Ca	Ti	
KM № 1	31,34	5,35	16,55	1,47	6,13	39,16	-	-	-	-	
Участок 001 -	23,27	1,33	12,26	0,56	15,11	41,03	1,33	0,48	0,49	0,61	
светлый											
Участок 002 -	33,02	4,57	17,83	1,34	3,33	39,91	-	-	-	-	
темный											

Как видно из снимков и рентгенограммы образца №1 КМ в светлых участках зарегистрировано содержание примесей магния, фосфора, кальция, титана (таблица 1).

В темных участках больше сосредоточены углерод и железо.

Рассмотрим исследования, проведенные на образце № 2 КМ. Микрофотографии и элементные РЭМ-дифрактограммы образца №2 КМ показаны на рисунке 2.

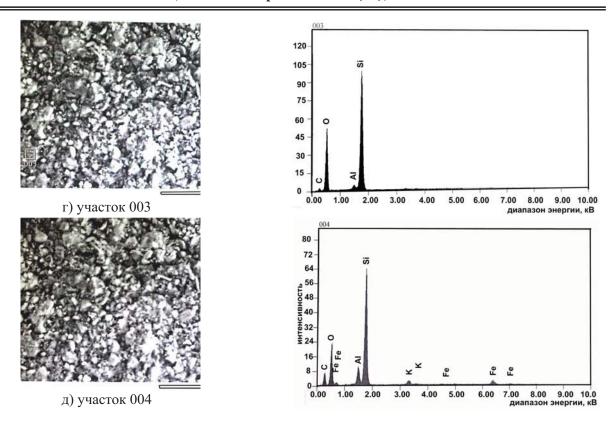


Рисунок 2 — Электронно-микроскопическое исследование образца №2 КМ с диаграммой результата полуколичественного фазового анализа рентгенограммы (чувствительность 0,5)

Результаты исследований элементного состава образца №2 KM на основе РЭМ представлены в таблице 2.

Таблица 2 – Элементный состав образца №2 КМ на основе РЭМ

Исследуемый объект	Содержание, масс.%							
	С	A1	Si	K	Fe	О		
KM №2	18,25	6,09	25,12	2,39	3,82	44,34		
Участок 001 – светлый друзообразный	18,94	6,20	23,35	2,56	3,26	45,70		
Участок 002 – светлый однородный	11,43	3,10	35,18	0,94	1,87	47,48		
Участок 003 – светлый неоднородный	10,05	1,50	32,35	-	-	56,10		
Участок 004 – темный неоднородный	26,65	3,89	24,09	1,28	4,09	39,99		

Как видно из таблицы 2, в темных участках образца сконцентрирован углерод и железо, в светлых участках больше щелочи, в светлых неоднородных участках концентрируются другие примеси.

Рассмотрим исследования, проведенные на образце № 3 МКГ. На рисунке 3 представлены микрофотографии и элементные дифрактограммы образца №3 МКГ.

Результаты исследований элементного состава образца № 3TK на основе РЭМ представлены в таблице 3.

Как видно из снимков и рентгенограммы образца № 3 МКГ в светлых участках зарегистрировано содержание примесей магния, фосфора, кальция, титана, алюминия. В темных участках больше сосредоточены углерод и железо. В целом, количество примесей меньше, чем в образцах 3 и 4, что говорит о том, что гидратированные образцы шунгитов содержат больше примесей, чем и объясняется разное поведение образцов в процессах очистки сточных вод от различных примесей.

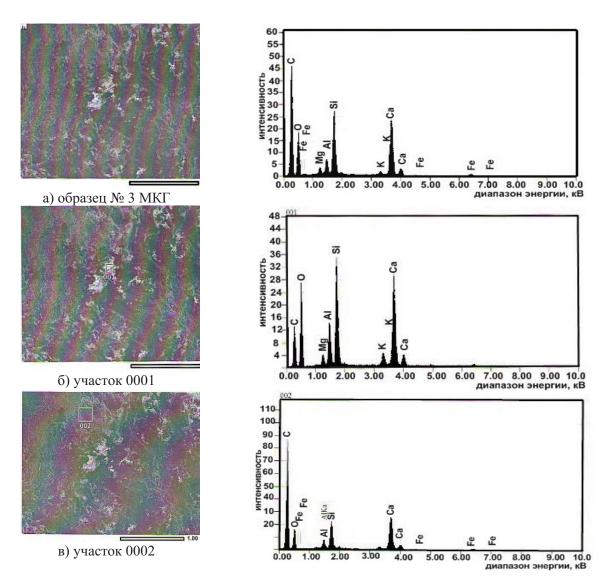


Рисунок 3 — Диаграмма результата полуколичественного фазового анализа рентгенограммы образца МКГ (чувствительность 0,5)

Таблица 3 – Элементный состав образца № 3 МКГ на основе РЭМ

Исследуемый	Содержание, масс.%									
объект	С	Al	Si	K	Fe	O	Mg	P	Ca	Ti
МКГ	46,45	1,6	6,13	0,56	1,0	34,05	0,86	ı	9,34	-
Участок 001 -	22,51	4,04	10,36	1,73	-	45,86	1,37	-	14,12	-
светлый										
Участок 002 -	58,60	1,29	4,01	-	0,84	26,58	-	-	8,68	-
темный										

Рассмотрим исследования, проведенные на образце № 4 МКГ. На рисунке 4 представлены микрофотографии и элементные дифрактограммы образца №4 МКГ.

Результаты исследований элементного состава образца № 4 МКГ на основе РЭМ представлены в таблице 4.

Таблица 4 – Элементный состав образца № 4 МКГ на основе РЭМ

Исследуемый		Содержание, масс.%								
объект	С	Al	Si	K	Fe	O	Mg	P	Ca	Ti
Участок 001 -	13,47	-	36,29	-	-	49,34	-	-	0,90	-
светлый										
неоднородный										
Участок 003 -	29,47	1,47	14,49	-	1,36	40,34	-	-	12,0	0,88
темный										
Участок 004 -	32,60	0,94	20,02	-	1,44	26,33	-	-	16,91	1,77
темный										

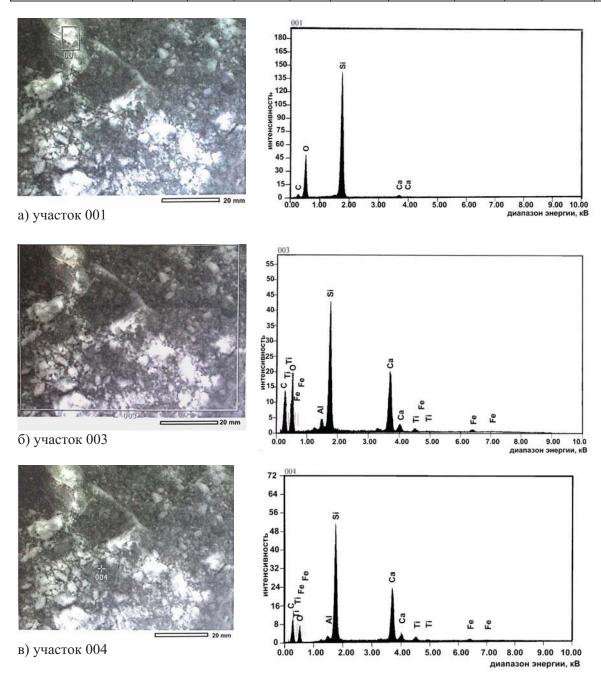


Рисунок 4 — Электронно-микроскопическое исследование образца № 4 МКГ (а), участка 001 (б), участка 002 (в), диаграмма результата полуколичественного фазового анализа рентгенограммы (чувствительность 0,5)

Как видно из таблицы 4, в темных участках образца сконцентрирован углерод, железо, кальций; в светлом участке больше кремния и меньше кальция.

Основой шунгита во всех образцах является кремнезем.

Выводы. Элементный энергодисперсионный рентгеновский микроанализ позволил определить среднее содержание углерода: 24,8 % в образце КМ и 35,81 % в образце МКГ, что выше значений, полученных ранее химическим и рентгено-дифрактометрическим методами. Это указывает на то, что элементный микроанализ позволяет идентифицировать углерод скрытокристаллической формы.

Установлено, что минеральной основой коксуских пород являются силикаты, а содержание углерода колеблется в пределах, соответствующих среднеуглеродистым шунгитистым породам (предел 5–25 %). В соответствии с полученными результатами они могут претендовать на промежуточные между среднеуглеродистыми шунгитистыми и высокоуглеродистыми шунгитовыми породами, содержание углерода в которых должно быть в пределах 25–80 %. Распределение примесей неравномерное.

Кроме того установлено, что в светлых участках микроснимков зарегистрировано содержание примесей магния, фосфора, кальция, титана. В темных участках больше сосредоточены углерод и железо.

ЛИТЕРАТУРА

- 1. Филиппов М.М., Ромашкин А.Е., Шунгитовые породы генезис, классификация, методы определения. Петрозаводск, 1996, 90 с.
- 2. Мусина У.Ш., Щербинин В.П., Шпаков А.Ю., Шамбинов Е.К., Сапаков К.К., Макаров В.И. Коксуский шунгит как природный регулятор баланса геотехнических экосистем /Труды II Экологического форума «Экология урбанизированных территорий», Усть-Каменогорск, 2010, с. 27–31.

ВОЕННЫЕ НАУКИ

УДК 355.2.001:323 (574)

Ахметов Жумабек Хатиоллаевич – к.в.н., профессор (Петропавловск, Военный институт Внутренних войск МВД РК) Кулбаев Женис Орашевич – соискатель (Петропавловск, Военный институт Внутренних войск МВД РК)

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОВЕДЕНИЯ СПЕЦИАЛЬНЫХ ОПЕРАЦИЙ ПРИ МАССОВЫХ БЕСПОРЯДКАХ ОСУЖДЕННЫХ В ИСПРАВИТЕЛЬНЫХ УЧРЕЖДЕНИЯХ

Внутренние войска МВД Республики Казахстан (далее – ВВ) принимают участие в специальных операциях по предотвращению и пресечению массовых беспорядков в исправительных учреждениях.

Специальная операция — комплекс войсковых, оперативных, политических, режимных и иных мероприятий и действий, проводимых соединениями (частями) совместно с органами внутренних дел (национальной безопасности) и другими взаимодействующими силами по единому замыслу (плану) и под единым руководством в целях выполнения задачи, возникшей при чрезвычайных ситуациях [2].