ЖЕЛЕЗНОДОРОЖНЫЙ ПУТЬ, ИЗЫСКАНИЕ И ПРОЕКТИРОВАНИЕ ЖЕЛЕЗНЫХ ДОРОГ

УДК 625.143.3:620(19)

Гурвич Анатолий Константинович — д.т.н., профессор (Санкт-Петербург, Петербургский государственный университет путей сообщения) Ахметова Асем Абдижалиевна — аспирант (Санкт-Петербург, Петербургский государственный университет путей сообщения)

ШИРОКОЗАХВАТНЫЙ ПРЕОБРАЗОВАТЕЛЬ КАК СРЕДСТВО ПОВЫШЕНИЯ НАДЕЖНОСТИ ОБНАРУЖЕНИЯ ДЕФЕКТОВ ПРИ СПЛОШНОМ УЛЬТРАЗВУКОВОМ КОНТРОЛЕ РЕЛЬСОВ

Рельсы являются основным элементом железнодорожного пути и подвергаются значительным силовым воздействиям при прохождении поездов. По мере эксплуатации в них развиваются различные дефекты, угрожающие безопасности движения поездов.

На железных дорогах Казахстана и других государств СНГ при контроле рельсов используют эхо- (ЭМ) и зеркально-теневой (ЗТМ) методы, реализуемые посредством одного прямого пьезоэлектрического преобразователя (ПЭП) с пьезопластиной диаметром $2a\approx 12$ мм на частоту f=2,5 МГц, располагаемого на поверхности катания рельса над шейкой шириной $C\approx 18$ мм (рис. 1, а) [1].

Эхо-метод ультразвуковой дефектоскопии основан на излучении в контролируемое изделие коротких зондирующих импульсов и регистрации эхо-сигнала U_{∂} , отраженного от дефекта. Временной интервал между зондирующим и эхо-импульсами пропорционален глубине залегания дефекта, а амплитуда, в определенных пределах, - отражающей способности (размеру) дефекта.

При ЗТМ признак обнаружения дефекта — ослабление амплитуды U_0 сигнала в заданное число раз от противоположной поверхности. Ее обычно называют донной поверхностью, а эхо-сигнал, отраженный от этой поверхности, — донным сигналом. Зеркально-теневой метод позволяет обнаружить ряд дефектов, которые не обнаруживаются другими методами. Это дефекты типа вертикальных расслоений в головке (код 30В по [2]), расслоения шейки (код 50 по [2]) и трещин в подошве в области проекции шейки (код 60 по [2]).

Помеха при ЗТМ — любое возмущение, приводящее к ослаблению амплитуды U_0 донного сигнала. Из шести видов помех при ЗТМ, сформулированных в [1], типичной случайной помехой в процессе сканирования рельсов при любом их состоянии являются поперечные смещения ПЭП на величину ΔX относительно продольной оси рельса: смещение всего на $\Delta X = \pm 5$ мм приводит к ослаблению U_0 на ≈ 7 дБ. Естественно, при смещениях ПЭП флуктуирует и падает амплитуда U_0 эхо-сигнала от внутренних дефектов, выявляемых ЭМ. Таким образом, при типовых совмещенных (или раздельно совмещенных) ПЭП, используемых во всех съемных и мобильных средствах дефектоскопии рельсов, помехи рассматриваемого вида при контроле ЗТМ могут приводить (и приводят) к перебраковке, а при контроле ЭМ — к недобраковке рельсов.

Не исключено, что поперечные смещения $\Pi \ni \Pi$, а не нарушения акустического контакта $\Pi \ni \Pi$ с рельсом, являются основной причиной ослабления донных сигналов и прерывистости линий донных сигналов на развертке типа B в мобильных средствах контроля рельсов [3].

Для повышения помехоустойчивости ЗТМ и ЭМ контроля рельсов к рассматриваемому виду помех предлагается ввести вместо применяемого ПЭП (или в

дополнение к нему) широкозахватный раздельно-совмещенный ПЭП с прямоугольными пьезопластинами шириной a=(8-12) мм и длиной l=N-C, где C- ширина шейки, $N\geq 1$. Значение N выбирается с учетом размаха поперечных смещений ПЭП при сканировании рельсов, присущего искательной системе, и уровня «донных» сигналов от подголовочных граней рельса. Заметим, что эти «донные» сигналы могут быть использованы для выявления горизонтальных трещин в головке рельсов, не заходящих в зону проекции шейки (дефекты кода $30\Gamma.1\text{-}2$ по [2]).

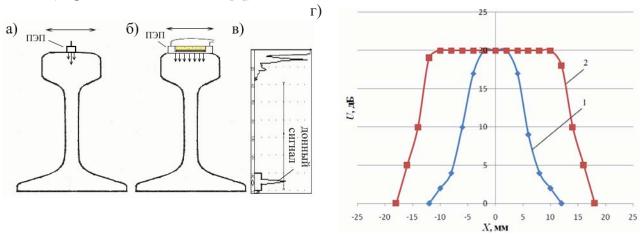


Рисунок 1 — Схемы прозвучивания рельса при контроле ЗТМ прямым ПЭП: а — типовым; б — широкозахватным; в — A развертка на экране дефектоскопа; г — огибающие донных сигналов при контроле: 1 — типовым ПЭП, 2a=12 мм; 2 — широкозахватным ПЭП, a=10 мм, l=40 мм

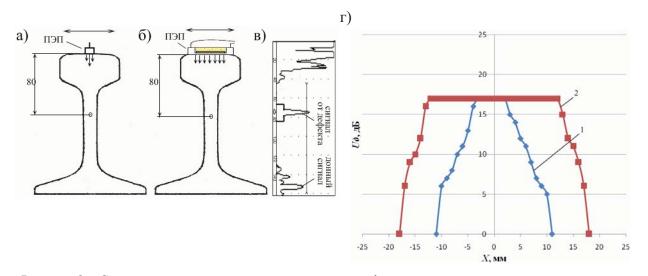


Рисунок 2 — Схемы прозвучивания рельса с моделью дефекта при контроле эхо-методом прямым ПЭП: а — типовым; б — широкозахватным; в — A развертка на экране дефектоскопа; г — огибающие эхо-сигналов при контроле: 1 — типовым ПЭП, 2a=12 мм; 2 — широкозахватным ПЭП, a=10 мм, l=40 мм

Исследования помехоустойчивости ЗТМ и ЭМ проводились на образцах рельсов типа Р50 бездефектных и с моделью дефекта в виде бесконечного цилиндрического отражателя (отверстия) диаметром 4 мм с помощью специально изготовленного типового и широкозахватного преобразователей. Амплитуда сигналов измерялась с точностью 1 дБ. Каждый из 4-х этапов исследований проводился 5 раз. Усредненные результаты измерений отображены на рис. 1 (г) и 2 (г) и в таблице 1.

Таблица 1 — Значения ΔX_o и ΔX_o смещений ПЭП, вызывающих ослабление на 6 дБ амплитуд донного сигнала U_o при и эхо-сигнала от модели дефекта U_o

ΔX_0 , мм, для ПЭП		ΔX_{∂} , мм, для П \Im П		
типового	широкозахватного	типового	широкозахватного	
2a = 12 MM	a = 10 mm, $l = 40$ mm	2a = 12 MM	a = 10 mm, $l = 40$ mm	
≈ 4	≈ 14	≈ 3	≈ 10	

Вывод. Результаты экспериментальных исследований подтверждают целесообразность апробации изложенного предложения при контроле рельсов, уложенных в пути (см. рис. 1, 2 и табл.1).

ЛИТЕРАТУРА

- 1. Неразрушающий контроль рельсов при их эксплуатации и ремонте / Под ред. А.К. Гурвича. М.: Транспорт, 1983. 318 с.
 - 2. Классификация дефектов рельсов $HTД/Ц\Pi 1 93. M.$: Транспорт, 1993. 64 с.
- 3. Марков А.А., Шпагин Д.А. Ультразвуковая дефектоскопия рельсов. 2-ое изд. перераб. и доп. СПб.: Образование Культура, 2008. 283 с.

УДК 629.4.015

Достиярова Алия Мухамедияровна – к.т.н., доцент (Алматы, КазАТК)

К ВОПРОСУ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ГРУНТОВ ЗЕМЛЯНОГО ПОЛОТНА

При эксплуатации и строительстве новых железных дорог немаловажной является возможность определять, как меняется напряженно-деформированное состояние земляного полотна с течением времени. Учитывать сезонные изменения работы железнодорожных насыпей в расчете необходимо, поскольку это позволяет выделять неблагоприятные условия эксплуатации. Для расчета земляного полотна на напряженно-деформированное состояние необходима математическая модель, позволяющая учитывать сезонные изменения работы земляного полотна.

Для определения грунтового строения исследуемого объекта применялись метод инженерно-геологического бурения и метод сейсмопрофилирования в пунктах измерения колебаний пробурены скважины, из которых взяты пробы грунта. В результате лабораторного исследования установлено наименование грунтов и определены их физикомеханические характеристики /1/: удельное сцепление С, угол внутреннего трения φ , модуль общей деформации Е, коэффициент Пуассона ν и плотность ρ , которые представлены в таблице 1.

Таблица 1 — Физико-механические характеристики грунтов насыпи

Наименование грунта	С, кПа	ф, градус	Е, кПа	v	ρ, κH/m ³
Щебень	13	45	400000	0,23	20
Песко - гравий	2	35	120000	0,28	20
Суглинок насыпи	22,5	19	50000	0,35	20
Суглинок (основание)	30	40	50000	0,35	20