Ýêîëîãè÷åñêèå îñîáåííîñòè ôîòîñèíòåçà è ïîïûòêè áèîèíæåíåðèè ïîâûøåíèÿ åãî ýôôåêòèâíîñòè

ÓÄÊ:  581.132:577.21

Àâòîð ñòàòüè:  Ðÿáóøêèíà Í.À.

Ìåñòî ðàáîòû àâòîðà:  Èíñòèòóò áèîëîãèè è áèîòåõíîëîãèè ðàñòåíèé

Íàçâàíèå æóðíàëà:  Áèîòåõíîëîãèÿ. Òåîðèÿ è ïðàêòèêà

Ãîä âûïóñêà:  2010

Íîìåð æóðíàëà:  4

Ñòðàíèöû:  ñ.12-34

Ðåçþìå íà êàçàõñêîì ÿçûêå:  Øîëóäà ñóìåí æәíå æàðûқïåí қàìòàìàñûç åòіëó, òûíûñ àëó, ôîòîòûíûñ àëó, ÑÎ2 ôèêñàöèÿñûíûң àðàқàòûíàñû, ôîòîñèíòåçäің Ñ3, Ñ4 æәíå ÑÀÌ æîëäàðûíûң åðåêøåëіêòåðі қûñқàøà ñèïàòòàëғàí. Ñîíûìåí қàòàð өñіìäіêòåðäің өíіìäіëіãіí àðòòûðó ìàқñàòûíäà ðèáóëåçî-áèñôîñôàò êàðáîêñèëàçà, àêòèâàçà, ôîñôîýíîëïèðóâàò êàðáîêñèëàçà æәíå ò.á. ôåðìåíò ãåíäåðі, ñàõàðîçà ñèíòåçі æәíå òðàíñêðèïöèÿ ôàêòîðëàðû àðқûëû Ñ3 өñіìäіêòåðіí òðàíñôîðìàöèÿëàéòûí òәæіðèáåëåð қàðàñòûðûëғàí.

Ðåçþìå íà àíãëèéñêîì ÿçûêå:  This review shortly considers some features of Ñ3, Ñ4 and ÑÀÌ photosynthesis to respond to the environment. Experiments for Ñ3 plants transformation by introduction of genes of Rubisco, activaseRubisco, phosphoenolpyruvate carboxylase and other enzymes of Ñ4 phothosynthesis, sucrose synthesis and transcription factors with aim to increase plant productivity are discussed.

Ñïèñîê ëèòåðàòóðû:  
1. Plant Physiology. Fourth Edition. Eds. F.B. Salisbury, C.W. Ross. Thomson Information/Publishing Group. – 1992. – 682 ðð.
2. Ýäâàðäñ Äæ., Óîêåð Ä. Ôîòîñèíòåç Ñ3 è Ñ4 ðàñòåíèé: ìåõàíèçìû è ðåãóëÿöèÿ. –Ìîñêâà: Ìèð, 1986. – 579 ñ.
3. Gupta A.K., Kaur N. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants // J Biosci. – 2005. – V. 30(5). – P. 761–776.
4. Hanson J., Smeekens S. Sugar perception and signaling-an update // Curr Opin Plant Biol. –2009. – V. 12(5). – P. 562–567.
5. Geiger D.R., Servaites J.C. Diurnal regulation of photosynthetic carbon metabolism in C-3 plants // Annu Rev Plant Physiol. – 1994. – V. 45. – Ð. 235–256.
6. Crafts-Brandner, S.J., and Salvucci, M.E. Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2 // Proc. Natl. Acad. Sci. USA. – 2000. – V. 97. – P.13430–13435.
7. Kurek I., Chang T.K., Bertain S. M., Madrigal A., Liu L., Lassner M.W., and Zhu G. Enhanced Thermostability of Arabidopsis Rubisco Activase Improves Photosynthesis and Growth Rates under Moderate Heat Stress // Plant Cell. – 2007. –V. 19(10). – P. 3230–3241.
8. Portis A. Rubisco activase: Rubisco’s catalytic chaperone // Photosynth Res. – 2003. – V.75. – P. 11–27.
9. YamoriW. and von Caemmerer S. Effect of Rubisco Activase Deficiency on the Temperature Response of CO2 Assimilation Rate and Rubisco Activation State: Insights from Transgenic Tobacco with Reduced Amounts of Rubisco Activase1[W][OA] // Plant Physiology. –2009. – V. 151. – P. 2073–2082.
10. Yin Z., Meng F., Song H., Wang X., Xu X., Yu D. Expression quantitative trait loci analysis of two genes encoding rubisco activase in soybean // Plant Physiol. – 2010. – V. 152(3). – 1625–1637.
11. Von Caemmerer S., Quinn V., Hancock N.C., Price G.D., Furbank R.T. and Ludwig M. Carbonic anhydrase and C 4 photosynthesis: a transgenic analysis // Plant, Cell and Environment. – 2004. – V. 27. – P. 697–703.
12. Noctor G., De Paepe R., Foyer C.H. // Trends Plant Sci. – 2007. – V. 12(3). – P. 125-34.
13. Lee C.P., Eubel H., O’Toole N., Millar A.H. // Mol Cell Proteomics. – 2008. – V. 7(7). – P.1297–1316.
14. Lunn J.E. Compartmentation in plant metabolism // Journal of Experimental Botany. – 2007. – V. 58. – P. 35–47.
15. Sage R.F. The evolution of C4 photosynthesis // New Phytologist.– 2004.–V.161.–341–370
16. Kebeish R., Niessen M., Thiruveedhi K., Bari R., Hirsch H.J., Rosenkranz R., Stabler N., Schonfeld B., Kreuzaler F., Peterhansel C. Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana // Nat Biotechnol. – 2007. – V.25(5). – P. 593-599.
17. Ðÿáóøêèíà Í.À., Ïàïèíà Å.À., Áîãäàíîâà Å.Ä., Ïîëèìáåòîâà Ô.À. Ôîñôîýíîëïèðóâàòêàðáîêñèëàçà â ôîòîñèíòåçèðóþùèõ îðãàíàõ ñîðòîâ ïøåíèöû // Èçâåñòèÿ ÍÀÍ ÐÊ. Ñåðèÿ áèîëîãè÷åñêàÿ è ìåäèöèíñêàÿ. – 1998. – ¹3. – C. 88-93.
18. Ðÿáóøêèíà Í.À., Ïàïèíà Å.À. Ôîñôîýíîëïèðóâàòêàðáîêñèëàçíàÿ àêòèâíîñòü ïåðâè÷íûõ êîðíåé ïøåíèöû è ïîëó÷åííîé èç íèõ êàëëóñíîé êóëüòóðû // Ôèçèîëîãèÿ ðàñòåíèé. – 1988. – T. 35. – Bûï. 5. – Ñ. 921-927.
19. Chollet R., Vidal J., O’Leary M.H. Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants // Annu Rev Plant Physiol Plant Mol Biol. – 1996. – V.47. – P.273–298.
20. Christin P.A., Salamin N., Savolainen V., Duvall M.R., Besnard G. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes. // Curr Biol. – 2007. – V. 17. – P. 1241-1247.
21. Sage, Coleman J.R. Effects of low atmospheric CO(2) on plants: more than a thing of the past // Trends Plant Sci. – 2001. – V. 6(1). – P. 18-24.
22. Christin P.A., Besnard G., Samaritani E., Duvall M.R., Hodkinson T.R., Savolainen V., Salamin N. Oligocene CO2 decline promoted C4 photosynthesis in grasses // Curr Biol. – 2008. – V.18(1). – P. 37-44.
23. Sage R.F., Kubien D.S. The temperature response of C(3) and C(4) photosynthesis // Plant Cell Environ. – 2007. – 30(9). – P. 1086-1106.
24. Ward J.K., Myers D.A., Thomas R.B. Physiological and growth responses of C3 and C4 plants to reduced temperature when grown at low CO2 of the last ice age // J Integr Plant Biol. – 2008. – V. 50(11). – P. 1388-1395.
25. Ristic Z, Momcilovic I, Bukovnik U, Prasad PV, Fu J, Deridder BP, Elthon TE, Mladenov N.Rubisco activase and wheat productivity under heat-stress conditions. J Exp Bot. 2009;60(14):4003-14.
26. Atkin O.K. and Machere D. The crucial role of plant mitochondria in orchestrating drought tolerance// Annals of Botany. – 2009. – V. 103. – P. 581–597.
27. Ghannoum O. C4 photosynthesis and water stress // Annals of Botany. – 2009. – V. 103. – P.635–644.
28. Carmo-Silva A.E., Keys A.J., P. Andralojc J., Powers S.J., Arrabac M.C.? and Parry J. M.A. Rubisco activities, properties, and regulation in three different C4 grasses under drought // Journal of Experimental Botany. – 2010. – V. 61. – P. 2355–2366.
29. Sage T.L., Sage R.F. The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. // Plant Cell Physiol. – 2009. – V. 50(4). – Ð. 756-772.
30. Chuong S.D., Franceschi V.R., Edwards G.E. The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species // Plant Cell. – 2006. – V. 18(9). – P. 2207-2223.
31. Park J., Knoblauch M., Okita T.W., Edwards G.E. Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C(4) photosynthesis in Bienertia sinuspersici // Planta. – 2009. – V. 229(2). – P. 369-382.
32. Edwards E.J., Smith S.A. Phylogenetic analyses reveal the shady history of C4 grasses // Proc Natl Acad Sci USA. – 2010. – V. 107(6):2532-2537.
33. Gemedjieva N., Teixeira da Silva J.A., Ryabushkina N. Representation of Endemics in Floristic Subprovinces of Kazakhstan // The Asian and Australasian Journal of Plant Science and Biotechnology.– 2010 Global Science Books, in press.
34. Lara M.V., Chuong S.D.X., Akhani H., Andreo C.S., and Edwards G.E. Species Having C4 Single-Cell- Type Photosynthesis in the Chenopodiaceae Family Evolved a Photosynthetic Phosphoenolpyruvate Carboxylase Like That of Kranz-Type C4 Species // Plant Physiology. – 2006. – V. 142. – P. 673–684.
35. Voznesenskaya E.V., Edwards G.E., Kiirats O., Artyusheva. E.G., Franceschi V.R. Development of biochemical specialization and organelle partitioning in the single celled C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae) // Am J Bot. – 2003. – V. 90. – P.1669–1680.
36. Voznesenskaya E.V., Chuong S.D., Koteyeva N.K., Franceschi V.R., Freitag H., Edwards G.E. Structural, biochemical, and physiological characterization of C4 photosynthesis in species having two vastly different types of kranz anatomy in genus Suaeda (Chenopodiaceae) // Plant Biol (Stuttg). – 2007. – V. 9(6). – P. 745-757.
37. Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. Revealing diversity in structural and biochemical forms of C4 photosynthesis and a C3-C4 intermediate in genus Portulaca L. (Portulacaceae) J Exp Bot. 2010, Jun 30.
38. Vogan P.J., Frohlich M.W., Sage R.F. The functional significance of C3-C4intermediate traits in Heliotropium L. (Boraginaceae): gas exchange perspectives // Plant Cell Environ. – 2007. – V.30(10). – P. 1337-1345.
39. Lawlor D.W. Musings about the effects of environment on photosynthesis // Annals of Botany. – 2009. – V. 103. – P. 543–549.
40. Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell // Annals of Botany. – 2009. – V. 103. – P. 551–560.
41. Pfannschmidt T., Brautigam K., Wagner R., Dietzel L., Schroter Y., Steiner S., and Nykytenko A. Potential regulation of gene expression in photosynthetic cells by redox and energystate: approaches towards better understanding. Annals of Botany. – 2009. – V. 103. – P.599–607.
42. Hartman F.C., Harpel M.R. Structure, function, regulation, and assembly of D-ribulose-1,5- bisphosphate carboxylase/oxygenase // Annu Rev Biochem. – 1994. – V. 63. – P. 197–234.
43. Suzuki Y., Ohkubo M., Hatakeyama H., Ohashi K., Yoshizawa R., Kojima S., Hayakawa T., Yamaya T., Mae T., Makino A. Increased Rubisco content in transgenic rice transformed with the ‘sense’ rbcS gene // Plant Cell Physiol. – 2007. – V. 48(4). – P. 626-637.
44. Suzuki Y., Miyamoto T., Yoshizawa R., Mae T., Makino A. Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS // Plant Cell Environ. – 2009. – P. 32(4). – P. 417-427.
45. Guillaume T. G.B., Farquhar G.D., and Andrews T.J. Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized // PNAS. – 2006. – V. 103. – P. 7246–7251.
46. Christin P.A., Salamin N., Muasya A.M., Roalson E.H., Russier F., Besnard G. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis // Mol Biol Evol. – 2008. – V. 25(11). – P. 2361-2368.
47. Wu H., Li L., Jing Y., Kuang T. Over-and anti-sense expressions of the large isoform of ribulose-1,5- bisphosphate carboxylase/oxygenase activase gene in Oryza sativa affect the photosynthetic capacity // Photosynthetica. – 2007. – 45. – P. 194–201.
48. Yamori W., von Caemmerer S. Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase // Plant Physiol. – 2009. – V. 151(4). – P. 2073-2082.
49. Scafaro A.P., Haynes P.A., and Atwell B.J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice // Journal of Experimental Botany. – 2010. – V.61. – Ð. 191– 202.
50. Wang D., Li X.F., Zhou Z.J., Feng X.P., Yang W.J., Jiang D.A. Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant // Physiol Plant. – 2010. – V. 139. – P. 55-56.
51. ParryJ., Keys A.J., Madgwick P.J., Carmo-Silva A.E. and Andralojc P.J. Rubisco regulation: a role for inhibitors // Journal of Experimental Botany. – 2008. – V. 59. – P. 1569–1580.
52. Tamoi M., Nagaoka M., Yabuta Y., Shigeoka Sh. Carbon metabolism in the Calvin cycle // Plant Biotechnology. – 2005. – V. 22. – P. 355–360.
53. Tamoi M., Nagaoka M., Miyagawa Y., Shigeoka S. Contribution of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase to the photosynthetic rate and carbon flow in the Calvin cycle in transgenic plants // Plant Cell Physiol. – 2006. – V. 47. – Ð. 380-390.
54. Lee S.K., Jeon J.S., Bornke F., Voll L., Cho J.I., Goh C.H., Jeong S.W., Park Y.I., Kim S.J., Choi S.B., Miyao A., Hirochika H., An G., Cho M.H., Bhoo S.H., Sonnewald U., Hahn T.R. Loss of cytosolic fructose-1,6-bisphosphatase limits photosynthetic sucrose synthesis and causes severe growth retardations in rice (Oryza sativa) // Plant Cell Environ. – 2008. – V. 31. – P. 1851-1863.
55. Serrato A.J., de Dios Barajas-Lopez J., Chueca A., Sahrawy M. Changing sugar partitioning in FBPase-manipulated plants // J. Exp Bot. – 2009. – P. 2923-2931.
56. Lutfiyya L.L., Xu N., D’Ordine R.L., Morrell J.A., Miller P.W., Duff S.M. Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants // J Plant Physiol. – 2007. – V.164. – P. 923-933.
57. Lunn J.E., Gillespie V.J. and Furbank R.T. Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic Plants // Journal of Experimental Botany. – 2003. – V. 54. – P. 223–237.
58. Baxter Ch.J., Foyer Ch.H., Turner J., Rolfe S.A. and QuickW.P. Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development Journal of Experimental Botany. – 2003. – V. 54. – P. 1813–1820.
59. Lundmark M., Cavaco A.M., Trevanion S., Hurry V. Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesis grown at low temperature: a role formetabolite transporters // Plant Cell Environ. – 2006. – 29. – P. 1703-1714.
60. Coleman H.D., Beamish L., Reid A., Park J.Y., Mansfield S.D. Altered sucrose metabolism impacts plant biomass production and flower development // Transgenic Res. – 2010. – V. 19. – P.269-283.
61. Haigler, Singh B., Zhang D., Hwang S., Wu C., Cai W.X., Hozain M., Kang W., Kiedaisch B., Strauss R.E., Hequet E.F., Wyatt B.G., Jividen G.M., Holaday A.S. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiberquality under controlled environmental conditions // Plant Mol Biol. – 2007. – V.63. – P. 815-832.
62. Park J.Y., Canam T., Kang K.Y., Ellis D.D., Mansfield S.D. Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development // Transgenic Res. – 2008. – V. 17. – P. 181-192.
63. Ku M.S., Agarie S., Nomura M., Fukayama H., Tsuchida H., Ono K., Hirose S., Toki S., Miyao M., Matsuoka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants // Nat. Biotechnol. – 1999. – V. 17. – P. 76-80.
64. Chastain C.J., Xu W., Parsley K., Sarath G., Hibberd J.M., Chollet R. The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure // Plant J. – 2008. – V. 53. – P. 854-863.
65. Parsley K., Hibberd J.M. The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins // Plant Mol Biol. – 2006. – V. 62. – P. 339-349.
66. Moons A., Valcke R., Van Montagu M. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant // Plant J. – 1998. – V. 15. – P. 89-98.
67. Chastain C.J., Heck J.W., Colquhoun T.A., Voge D.G., Gu X.Y. Posttranslational regulation of pyruvate, orthophosphate dikinase in developing rice (Oryza sativa) seeds // Planta. – 2006. – V.224(4). – P. 924-934.
68. Taylor L., Nunes-Nesi A., Parsley K., Leiss A., Leach G., Coates S., Wingler A., Fernie A.R., Hibberd J.M. Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content // Plant J. – 2010. – V. 62. – P. 641-652.
69. Taniguchi Y., Ohkawa H., Masumoto C., Fukuda T., Tamai T., Lee K., Sudoh S., Tsuchida H., Sasaki H., Fukayama H., Miyao M. Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to introduce the C4-like photosynthetic pathway into rice // J Exp Bot. – 2008. – V. 59. – P. 1799-1809.
70. Rumeau D., Cuine .S, Fina L., Gault N., Nicole M., Peltier G. Subcellular distribution of carbonic anhydrase in Solanum tuberosum L. leaves: characterization of two compartment-specific isoforms // Planta. – 1996. – V. 99. – P. 79-88.
71. Hayano-Kanashiro C., Calderon-Vazquez C., Ibarra-Laclette E., Herrera-Estrella L., Simpson J. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation // PLoS One. – 2009. – V. 4(10):e7531.
72. Khandelwal A., Elvitigala T., Ghosh B., Quatrano R.S. Arabidopsis transcriptome reveals control circuits regulating redox homeostasis and the role of an AP2 transcription factor // Plant Physiol. – 2008. – V. 148. – P. 2050-2058.
73. Brautigam A., Kajala K., Wullenweber J., Sommer M., Gagneul D., Weber K.L., Carr K.M., Gowik U., Ma? J., Lercher M.J., Westhoff P., Hibberd J.M., Weber A.P. An mRNA blueprint for C4 photosynthesis derived from comparative transcriptomics of closely related C3 and C4 species // Plant Physiol. – 2010, Jun 11.
74. Grotewold E. Transcription factors for predictive plant metabolic engineering: are we there yet? // Curr Opin Biotechnol. – 2008. – V. 19. – P. 138-144.
75. Saibo N.J.M., Lourenco T. and Oliveira M.M. Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses // Annals of Botany. – 2009. – V.103. – P. 609– 623.
76.zschke A., Djamei A., Bitton F., Hirt H. A major role of the MEKK1-MKK1/2-MPK4 pathway inROS signalling. // Plant. – 2009. – V. 2. – P. 120-137.
77. Schmidt E.E. and. Davies Ch.J. The origins of polypeptide domains // Bioessays. – 2007. – V.29. – P. 262–270.
78. Rosic N.N. Versatile capacity of shuffled cytochrome P450s for dye production // Appl MicrobiolBiotechnol. – 2009. – V. 82. – Ð. 203-210.

Ýëåêòðîííûé âàðèàíò:  ñêà÷àòü



 îáçîðå êðàòêî îïèñàíû îòëè÷èòåëüíûå îñîáåííîñòè Ñ3, Ñ4 è ÑÀÌ ôîòîñèíòåçà, êàðáîêñèëèðóþùèõ ôåðìåíòîâ; âçàèìîîòíîøåíèé ôèêñàöèè ÑÎ2, äûõàíèÿ è ôîòîäûõàíèÿ íà ñâåòó; âëèÿíèå íà ôîòîñèíòåòè÷åñêóþ ôèêñàöèþ òåìïåðàòóðû, îñâåùåííîñòè è âîäîîáåñïå÷åííîñòè. Ïðèâåäåíû ïðèìåðû òðàíñôîðìàöèè Ñ3 ðàñòåíèé ñ öåëüþ ïîâûøåíèÿ ïðîäóêòèâíîñòè íà îñíîâå èíòðîäóêöèè ôåðìåíòîâ: ðèáóëåçî-áèñôîñôàò êàðáîêñèëàçû è àêòèâàçû, ôîñôîýíîëïèðóâàò êàðáîêñèëàçû è äðóãèõ ôåðìåíòîâ Ñ4 ïóòè; ôåðìåíòîâ, ó÷àñòâóþùèõ â ðåãåíåðàöèè àêöåïòîðà óãëåêèñëîòû; ôåðìåíòîâ ñèíòåçà ñàõàðîçû è äð., à òàêæå ïåðñïåêòèâû èñïîëüçîâàíèÿ äëÿ òðàíñôîðìàöèè ôàêòîðîâ òðàíñêðèïöèè.

 


Ïîñëåäíèå Íîâîñòè

  • 28.11.2012

    Êàçàõñòàíñêàÿ îáùåíàöèîíàëüíàÿ ïðîáíàÿ ïîäïèñêà íà IEEE/IET

  • 20.12.2011

    Â øàãå îò öåëè «Smart»

  • 20.12.2011

    Èííîâàöèîííûé ïðîðûâ ðåãèîíà

Ôîðìà Àâòîðèçàöèè

ÂîéòèÂîéòè
  • Çàáûëè ïàðîëü?